期刊文献+
共找到1,399篇文章
< 1 2 70 >
每页显示 20 50 100
Optimizing canopy-spacing configuration increases soybean yield under high planting density 被引量:2
1
作者 Ruidong Li Cailong Xu +4 位作者 Zongsheng Wu Yifan Xu Shi Sun Wenwen Song Cunxiang Wu 《The Crop Journal》 2025年第1期233-245,共13页
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor... Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain. 展开更多
关键词 Soybean Planting density Row-spacing configuration Canopy transmittance Yield
在线阅读 下载PDF
Modeling and Capacity Configuration Optimization of CRH5 EMU On-Board Energy Storage System
2
作者 Mingxing Tian Weiyuan Zhang Zhaoxu Su 《Energy Engineering》 EI 2025年第1期307-329,共23页
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi... In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train. 展开更多
关键词 Electrified railway regenerative braking bi-level programming on-board energy storage power quality capacity configuration
在线阅读 下载PDF
Dual-surface capped hydroxyapatite nano-amendment with tuned alternate long-short chain configuration for efficient adsorption towards multi-heavy metal ions in complex-contaminated systems
3
作者 GAO Mochou MENG Shan +7 位作者 ZHANG Jinzhong FENG Wenhua DONG Shuo CHEN Jianping ZHAO Yanbao YU Laigui YING Rongrong ZOU Xueyan 《无机化学学报》 北大核心 2025年第7期1427-1438,共12页
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an... Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides. 展开更多
关键词 heavy metal HYDROXYAPATITE nano-amendment configuration tuning synergistic adsorption
在线阅读 下载PDF
An Improved LZO Compression Algorithm for FPGA Configuration Bitstream Files
4
作者 Xiaoling Lai Jian Zhang +3 位作者 Yangming Guo Ting Ju Qi Zhu Guochang Zhou 《Computers, Materials & Continua》 2025年第2期3091-3109,共19页
With the increase in the quantity and scale of Static Random-Access Memory Field Programmable Gate Arrays (SRAM-based FPGAs) for aerospace application, the volume of FPGA configuration bit files that must be stored ha... With the increase in the quantity and scale of Static Random-Access Memory Field Programmable Gate Arrays (SRAM-based FPGAs) for aerospace application, the volume of FPGA configuration bit files that must be stored has increased dramatically. The use of compression techniques for these bitstream files is emerging as a key strategy to alleviate the burden on storage resources. Due to the severe resource constraints of space-based electronics and the unique application environment, the simplicity, efficiency and robustness of the decompression circuitry is also a key design consideration. Through comparative analysis current bitstream file compression technologies, this research suggests that the Lempel Ziv Oberhumer (LZO) compression algorithm is more suitable for satellite applications. This paper also delves into the compression process and format of the LZO compression algorithm, as well as the inherent characteristics of configuration bitstream files. We propose an improved algorithm based on LZO for bitstream file compression, which optimises the compression process by refining the format and reducing the offset. Furthermore, a low-cost, robust decompression hardware architecture is proposed based on this method. Experimental results show that the compression speed of the improved LZO algorithm is increased by 3%, the decompression hardware cost is reduced by approximately 60%, and the compression ratio is slightly reduced by 0.47%. 展开更多
关键词 FPGA configuration bitstream file LZO compression DECOMPRESSION
在线阅读 下载PDF
Aerodynamic configuration of a wide-range reversible vehicle
5
作者 Yuhang SUN Shibin LUO +1 位作者 Jun LIU Jiaqi TIAN 《Chinese Journal of Aeronautics》 2025年第4期257-271,共15页
The design of wide-range high-efficiency aerodynamic configurations is one of the most important key technologies in the research of near-space hypersonic vehicles.A double-sided intake configuration with different in... The design of wide-range high-efficiency aerodynamic configurations is one of the most important key technologies in the research of near-space hypersonic vehicles.A double-sided intake configuration with different inlets on the upper and lower surfaces is proposed to adapt to widerange flight.Firstly,the double-sided intake configuration’s design method and flight profile are delineated.Secondly,Computational Fluid Dynamics(CFD)numerical simulation based on multi-Graphics Processing Unit(GPU)parallel computing is adopted to evaluate the vehicle’s performance comprehensively,aiming to verify the feasibility of the proposed scheme.This evaluation encompasses a wide-range basic aerodynamic characteristics,inlet performance,and heat flux at critical locations.The results show that the inlets of the designed integration configuration can start up across Mach number 3.5 to 8.The vehicle possesses multi-point cruising capability by flipping the fuselage.Simultaneously,a 180°rotation of the fuselage can significantly decrease the heat accumulation on the lower surface of the vehicle,particularly at the inlet lip,further decreasing the temperature gradient across the vehicle structure.This study has some engineering value for the aerodynamic configuration design of wide-range vehicles.However,further study reveals that the flow phenomena at the intersection of two inlets are complex,posing potential adverse impacts on propulsion efficiency.Therefore,it is imperative to conduct additional research to delve into this matter comprehensively. 展开更多
关键词 Hypersonic vehicles AERODYNAMICS Double-sided intake configuration Wide-range reversible vehicle Inlet performance Multi-point cruising
原文传递
Research on Wind-Solar Complementarity Rate Analysis and Capacity Configuration Based on COPULA-IMOPSO
6
作者 Caifeng Wen Feifei Xue +4 位作者 Hongliang Hao Edwin E.Nyakilla Ning Yang Yongsheng Wang Yuwen Zhang 《Energy Engineering》 2025年第4期1511-1529,共19页
This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessme... This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity.To enable more accurate predictions of the optimal wind-solar ratio,a comprehensive complementarity rate is proposed,which allows for the optimization of wind-solar capacity based on this measure.Initially,the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power,enabling the calculation of the comprehensive complementarity rate.Following this,a joint planning model is developed to enhance the system’s economy and reliability.The goal is to minimize total costs,load deficit rates,and curtailment rates by applying an ImprovedMulti-Objective Particle SwarmOptimization algorithm(IMOPSO).Results show that when the proportion of wind power reaches 70%,the comprehensive complementarity rate is optimized.This optimization leads to a 14.83%reduction in total costs and a 9.27%decrease in curtailment rates.Compared to existing studies,this paper offers a multidimensional analysis of the relationship between the comprehensive complementarity rate and the optimal wind-solar ratio,thereby improving predictive accuracy and providing a valuable reference for research on the correlation between wind and solar power. 展开更多
关键词 Wind-solar power generation comprehensive complementarity rate wind-solar ratio capacity configuration COPULA-IMOPSO model
在线阅读 下载PDF
Simulation Platform for the Optimal Configuration of Hybrid Energy Storage Assisting Thermal Power Units in Secondary Frequency Regulation
7
作者 Cuiping Li Ziyun Zong +5 位作者 Xingxu Zhu Zheng Fang Caiqi Jia Wenbo Si Gangui Yan Junhui Li 《Energy Engineering》 2025年第9期3459-3485,共27页
In response to the issue of determining the appropriate capacity when hybrid energy storage systems(HESS)collaborate with thermal power units(TPU)in the system’s secondary frequency regulation,a configuration method ... In response to the issue of determining the appropriate capacity when hybrid energy storage systems(HESS)collaborate with thermal power units(TPU)in the system’s secondary frequency regulation,a configuration method for HESS based on the analysis of frequency regulation demand analysis is proposed.And a corresponding simulation platform is developed.Firstly,a frequency modulation demand method for reducing the frequency modulation losses of TPU is proposed.Secondly,taking into comprehensive consideration that flywheel energy storage features rapid power response and battery energy storage has the characteristic of high energy density,a coordinated control strategy for HESS considering the self-recovery of state of charge(SOC)is put forward.Then,to measure the economic and technical performance of HESS in assisting the secondary frequency modulation of TPU,an optimized configurationmodel considering the full-life-cycle economy and frequency modulation performance of TPU and HESS system is constructed.Finally,a visual simulation platform for the combined frequency modulation of TPU and HESS is developed based on Matlab Appdesigner.Theresults of calculation examples indicate that the proposed configuration method can improve the overall economic efficiency and frequency modulation performance of TPU and HESS;The control strategy can not only prolong the service life of battery energy storage but also enhance the continuous response ability of HESS;The visual simulation platform is easy to use,and the simulation results are accurate and reliable. 展开更多
关键词 Frequency modulation demand control strategy configuration method simulation platform
在线阅读 下载PDF
Exploration on the Reform of the Teaching Method of the Plant Configuration and Landscape Architecture Course under Digital Technology
8
作者 Qiufan Xie 《Journal of Contemporary Educational Research》 2025年第8期141-158,共18页
By analyzing the urgent demand for digital talents in the current landscape industry and the challenges faced by the traditional teaching mode,this study aims to explore a set of teaching methodology reform solutions ... By analyzing the urgent demand for digital talents in the current landscape industry and the challenges faced by the traditional teaching mode,this study aims to explore a set of teaching methodology reform solutions based on digital technology to improve the quality of teaching and enhance the practical innovation ability of students.The study firstly describes the application of digital technologies such as CAD/BIM,3D modelling and rendering,virtual reality(VR)/augmented reality(AR),and geographic information system(GIS)in the field of landscape architecture.Then,the current teaching status of plant configuration and landscape architecture courses is analyzed,and the advantages and challenges of digital technology applications are identified.On this basis,this study proposes a multi-dimensional reform path and practice plan including the reconstruction of teaching objectives and content,innovation of teaching mode,improvement of teaching strategies and methods,as well as the construction of teaching resources and the reform of teaching evaluation,guided by modern educational theories such as constructivism,collaborative learning and project-based learning(PBL).Finally,this study emphasizes the key roles of faculty construction,optimization of hardware and software environment,and teaching management and institutional guarantee in the reform. 展开更多
关键词 Digital technology Plant configuration Teaching method Curriculum reform
在线阅读 下载PDF
Effect of Row Spacing Configuration Modes on Growth and Development of Xinluzao 63 and Amount of Residual Film in Agricultural Fields
9
作者 Na LIU Wushiken +3 位作者 Honghao ZHANG Xia YAN Huzi CONG Lin LI 《Plant Diseases and Pests》 2025年第1期20-23,33,共5页
[Objectives]To provide a reference for the promotion of appropriate row spacing configuration modes for cotton planting in the Bortala Mongol Autonomous Prefecture of Xinjiang.[Methods]Xinluzao 63 was employed as the ... [Objectives]To provide a reference for the promotion of appropriate row spacing configuration modes for cotton planting in the Bortala Mongol Autonomous Prefecture of Xinjiang.[Methods]Xinluzao 63 was employed as the research subject to examine the effects of three different configuration modes:three rows with one film,four rows with one film,and six rows with one film,on the growth and development of cotton,as well as on yield and the amount of residual film in the field.[Results]In comparison to the configuration modes of four rows with one film and six rows with one film,the development process in the row spacing configuration mode of three rows with one film was accelerated by 1-4 d.This configuration mode exhibited variability in several agronomic traits,particularly in plant height,the number of fruiting branches per plant,and the number of leaves per plant,with the observed trend indicating T3>T2>T1.Conversely,the height of the first fruiting branch node displayed an inverse trend.In terms of yield composition,no significant differences were observed in boll weight and yield among various configuration modes.However,T3 exhibited the highest boll weight at 5.68 g and a yield of 462.67 kg/667 m 2.Additionally,significant differences were noted in harvesting density and the number of bolls per plant.T3 demonstrated the lowest harvesting density at 1.11×104 plants/666.7 m 2,the highest number of bolls per plant at 8.63,and the highest boll opening rate at 97.48%.Furthermore,T3 also resulted in the least amount of agricultural film residue during the current season.[Conclusions]Among the three planting configuration modes examined,the low-density planting configuration mode consisting of three rows and one film demonstrated a significant advantage at the individual plant level.This approach yielded results comparable to those of the high density planting configuration mode while also reducing costs.Furthermore,low density planting positively influenced the cotton boll opening rate,leading to a decreased amount of residual film and promoting ecological health within the agricultural land. 展开更多
关键词 COTTON Row spacing configuration mode Growth and development YIELD Amount of residual film
在线阅读 下载PDF
High-spin configuration of asymmetric CoN_(1)C_(2)coordination for boosting d-p orbital hybridization in Fenton-like reactions
10
作者 Qian Bai Juanjuan Qi +8 位作者 Rongzhe Zhang Zhiyuan Chen Zihao Wei Zhiyi Sun Ziwei Deng Xudong Yang Qiangwei Li Wenxing Chen Lidong Wang 《Chinese Journal of Catalysis》 2025年第6期334-346,共13页
Asymmetric single-atom catalysts(ASACs)have attracted much attention owing to their excellent catalytic properties.However,the relationship between asymmetric coordination and the spin states of metal sites remains un... Asymmetric single-atom catalysts(ASACs)have attracted much attention owing to their excellent catalytic properties.However,the relationship between asymmetric coordination and the spin states of metal sites remains unclear.Additionally,the modulation of reactive oxygen species in Fenton-like reactions remains challenging.Herein,a novel strategy is reported for the rational design of highly loaded Co ASACs(CoN_(1)C_(2)/C_(2)N)immobilized on three-dimensional flower-like C_(2)N using an in situ-generated carbon defect method.In particular,the asymmetrically tricoordinated CoN_(1)C_(2)/C_(2)N exhibited excellent catalytic activity for sulfachloropyridazine degradation,with a turnover frequency of 36.8 min^(–1).Experimental results and theoretical calculations revealed that the electron spin state of the Co-active sites was transferred from the low-spin configuration(t_(2g)^(6)e_(g)^(1))to the high-spin configuration(t_(2g)^(5)e_(g)^(2))owing to asymmetric coordination.The high-spin Co 3d orbital in CoN_(1)C_(2)/C_(2)N possessed more unpaired electrons and therefore,had a strong ability to gain electrons from the O 2p orbitals of HSO_(5)^(–),boosting d-p orbital hybridization.More importantly,the spin-electron filling in theσ^(*)orbital of high-spin Co 3d−O 2p accelerated the desorption of^(*)SO_(5)•^(−),which acted as a rate-limiting step in the reaction,thus facilitating more^(1)O_(2)generation.This study provides an innovative synthetic route for practical ASACs and clarifies the critical relationship between structure and spin state,paving the way for advancements in environmental remediation and energy conversion applications. 展开更多
关键词 Asymmetric coordination C_(2)N High-spin configuration d-p orbital hybridization Fenton-like reaction
在线阅读 下载PDF
A Bi-Level Capacity Configuration Model for Hybrid Energy Storage Considering SOC Self-Recovery
11
作者 Fan Chen Tianhui Zhang +3 位作者 Man Wang Zhiheng Zhuang Qiang Zhang Zihan Ma 《Energy Engineering》 2025年第10期4099-4120,共22页
The configuration of a hybrid energy storage system(HESS)plays a pivotal role in mitigating wind power fluctuations and enabling primary frequency regulation,thereby enhancing the active power support capability of wi... The configuration of a hybrid energy storage system(HESS)plays a pivotal role in mitigating wind power fluctuations and enabling primary frequency regulation,thereby enhancing the active power support capability of wind power integration systems.However,most existing studies on HESS capacity configuration overlook the selfrecovery control of the state of charge(SOC),creating challenges in sustaining capacity during long-term operation.This omission can impair frequency regulation performance,increase capacity requirements,and shorten battery lifespan.To address these challenges,this study proposes a bi-level planning–operation capacity configuration model that explicitly incorporates SOC self-recovery control.In the operation layer,a variable-baseline charging/discharging strategy is developed to restore SOC by balancing positive and negative energy over a 24-h period,with the goal of maximizing daily operational benefits.In the planning layer,the annualized net life-cycle cost of the HESS isminimized by configuring storage capacity based on feedback fromthe operation layer.Thetwo layers operate iteratively to achieve coordinated optimization of capacity sizing and control strategy.Case study results demonstrate the effectiveness of the proposed method.Compared with a configuration without considering SOC self-recovery,the proposed approach reduces the 1-min wind power fluctuation rate to 3.53%,lowers the mean squared frequency error to 0.000084,and decreases the annualized net life-cycle cost by 545,000 CNY/MWh. 展开更多
关键词 Wind power smoothing primary frequency regulation hybrid energy storage system capacity configuration state of charge self-recovery
在线阅读 下载PDF
Seismic behavior of prefabricated,assembled,self-centering bridge piers with a damage transfer configuration
12
作者 Zhang Juhui Wu Jiashun +1 位作者 Qian Yiqing Guan Zhongguo 《Earthquake Engineering and Engineering Vibration》 2025年第3期861-874,共14页
To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier s... To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier structure configuration and the mechanism of local damage formation.Integrating the DTC into the PASP,numerical models of a previous experimental reference PASP and a PASP with damage transfer configuration(DTPASP)were established using the finite element software ABAQUS with a concrete damage plasticity(CDP)model.The models were then compared with experimental results regarding damage distribution,hysteresis curves,energy dissipation capacity,the joint opening degree,and residual displacement.The findings indicate that the finite element model developed in this study can well reflect the experimental results of the reference PASP.The incorporation of the DTC proved to be beneficial in preserving structural integrity,bearing capacity,and the functionality of the core structure of bridge piers following an earthquake.Meanwhile,this addition did not exert a significant influence on the seismic behavior of the core structure of the bridge pier. 展开更多
关键词 bridge engineering seismic behavior numerical models prefabricated assembled self-centering bridge piers damage transfer configuration
在线阅读 下载PDF
Improved Multi-Fusion Black-Winged Kite Algorithm for Optimizing Stochastic Configuration Networks for Lithium Battery Remaining Life Prediction
13
作者 Yuheng Yin Lin Wang 《Energy Engineering》 2025年第7期2845-2864,共20页
The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic co... The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm. 展开更多
关键词 Random configuration networks black-winged kite algorithm sine chaotic mapping laplace transform
在线阅读 下载PDF
Asymmetric ionomer configuration in membrane electrode assembly for enhanced water management and performance in anion exchange membrane fuel cells
14
作者 Xiaocan Wang Tengyu He +5 位作者 Jiayuan Mao Weiwei Zhang Donghai Mei Xikang Zhao Aimei Zhu Qiugen Zhang 《Journal of Energy Chemistry》 2025年第6期363-372,I0009,共11页
Anion exchange membrane fuel cells(AEMFCs)are considered a more affordable technology compared to proton exchange membrane fuel cells(PEMFCs),but the performance and durability of AEMFCs are still not competent with P... Anion exchange membrane fuel cells(AEMFCs)are considered a more affordable technology compared to proton exchange membrane fuel cells(PEMFCs),but the performance and durability of AEMFCs are still not competent with PEMFCs owing to the more challenging water management,which severely hinders its development and real-life applications.In this study,we introduce the strategy to boost the performance and stability of the membrane electrode assembly(MEA)of AEMFCs by regulating the hydrophilicity of the anode and cathode ionomers.Two poly(biphenyl alkylene)ionomers with different hydrophilicity are synthesized and used to fabricate MEAs with asymmetric or symmetric ionomer configurations in the anodic and cathodic catalyst layers(CLs)for AEMFCs.Molecular dynamics(MD)simulations have revealed different diffusion rates of water in the hydrophobic anode and the hydrophilic cathode,which show the potential of this design to improve water management in AEMFCs,The effectiveness of this design is also confirmed by experimental results that the MEA with this asymmetric configuration exhibits the highest power and current densities of 1.58 W cm^(-2)or 5.58 A cm^(-2),respectively,among all configurations.Furthermore,this configuration also enhances the durability,with the MEA showing a voltage decay rate of only 313.1μV h^(-1)after 500 h of in-situ durability test at 0.2 A cm^(-2).This study provides new insights into the rational design of more efficient water management in MEA for high-performance AEMFCs. 展开更多
关键词 Water management Asymmetric ionomer configuration Membrane electrode assembly Anion exchange membrane fuel cells
在线阅读 下载PDF
Research on the Configuration Quantity Issues of Decoy Based on Cost-Effectiveness Ratio
15
作者 Jun Tian Xu Zhu +1 位作者 Naiyan Zhang Hao Xu 《Open Journal of Modelling and Simulation》 2025年第1期106-114,共9页
With the continuous application of new technologies in reconnaissance and attack, false camouflage plays a more important role in improving the survivability of targets, and the number of decoys plays a crucial role i... With the continuous application of new technologies in reconnaissance and attack, false camouflage plays a more important role in improving the survivability of targets, and the number of decoys plays a crucial role in the camouflaging effect. Based on the concept of cost-effectiveness ratio, according to the newly formulated Johnson criterion and the view of discovery and destruction, this paper proposes to take the identification probability as the probability of being destroyed and uses mathematical formulas to calculate the cost of a single use decoy. On this basis, a cost-effectiveness ratio model is established, with the product of the increase in the survival probability of the target and the cost of the target as the benefit, and the sum of the product of the probability of being destroyed and the cost of the decoy and the cost of a single use as the consumption cost. The model is calculated and analyzed, and the number of decoys that conform to the actual situation is obtained. 展开更多
关键词 DECOY configuration Quantity Cost-Effectiveness Ratio
在线阅读 下载PDF
Design and experimental study of a field-reversed configuration plasma thruster prototype
16
作者 Yuxuan HUANG Ming ZHANG +5 位作者 Yong YANG Fangwei LYU Xiaopeng YI Chaofan LYU Yisong ZHANG Bo RAO 《Plasma Science and Technology》 2025年第3期118-126,共9页
The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep s... The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep space exploration.An experimental prototype,including diagnostic devices,was designed and constructed based on the principles of the RMF-FRC thruster,with an RMF frequency of 210 kHz and a maximum peak current of 2 kA.Under the rated operating conditions,the initial plasma density was measured to be 5×10^(17)m^(-3),and increased to 2.2×10^(19)m^(-3)after the action of RMF.The coupling efficiency of RMF was about 53%,and the plasma current reached 1.9 kA.The axial magnetic field changed in reverse by 155 Gauss,successfully reversing the bias magnetic field of 60 Gauss,which verifies the formation of FRC plasma.After optimization research,it was found that when the bias magnetic field is 100 Gauss,the axial magnetic field reverse variation caused by FRC is the highest at 164 Gauss.The experimental results are discussed and strategies are proposed to improve the performance of the prototype. 展开更多
关键词 rotating magnetic field(RMF) field-reversed configuration(FRC) plasma thrusters plasma current
在线阅读 下载PDF
Reconfiguration of B-DNA structure induced by ethanol
17
作者 Yue Huang Yipeng Chen +2 位作者 Jing Li Rongri Tan Huanhuan Qiu 《Chinese Physics B》 2025年第8期83-90,共8页
Solution environment can influence the flexible structure of DNA under specific conditions,thereby affecting the stability of nucleic acids and ultimately impacting critical biological processes such as replication an... Solution environment can influence the flexible structure of DNA under specific conditions,thereby affecting the stability of nucleic acids and ultimately impacting critical biological processes such as replication and transcription.Intracellular solution environment is variable,and previous studies have demonstrated that it can enhance the stability of DNA structures under certain circumstances.In this work,molecular dynamics simulations were conducted on B-DNA(1ZEW,with a nucleotide sequence of CCTCTAGAGG)derived from human breast cancer cells(MDA-MB231)to explore the effects of ethanol solution on DNA configuration transformation at different temperatures and concentrations.The calculated results indicate that ethanol facilitates the transition of 1ZEW from B-DNA to A-DNA at lower temperature.Furthermore,it is observed that temperature affects DNA structure to some extent,thereby modifying the trend in DNA configuration transformation.At low temperatures,the ethanol can promote the transformation of B-DNA into A-DNA at higher concentrations.While at higher temperatures,the DNA could be in a state of thermal melting.These conclusions presented here can give valuable insights into how ethanol affects B-DNA configuration transformations. 展开更多
关键词 ETHANOL molecular dynamic simulation DNA configuration
原文传递
Passively safe configuration design for spacecraft swarm flying with boundary constraints
18
作者 Chenglong XU Chengxi ZHANG Jihe WANG 《Chinese Journal of Aeronautics》 2025年第8期399-414,共16页
This paper investigates the configuration design associated with boundary-constrained swarm flying.An analytic swarm configuration is identified to ensure the passive safety between each pair of spacecraft in the radi... This paper investigates the configuration design associated with boundary-constrained swarm flying.An analytic swarm configuration is identified to ensure the passive safety between each pair of spacecraft in the radial-cross-track plane.For the first time,this work derives the explicit configurable spacecraft amount to clarify the configuration's accommodation capacity while considering the maximum inter-spacecraft separation constraint.For larger-scale design problem that involves hundreds of spacecraft,this paper proposes an optimization framework that integrates a Relative Orbit Element(ROE)affine transformation operation and successional convex optimization.The framework establishes a multi-subcluster swarm structure,allowing decoupling the maintenance issues of each subcluster.Compared with previous design methods,it ensures that the computational cost for constraints verification only scales linearly with the swarm size,while also preserving the configuration optimization capacities.Numerical simulations demonstrate that the proposed analytic configuration strictly meets the design constraints.It is also shown that the proposed framework reduces the handled constraint amount by two orders compared with direct optimization,while achieving a remarkable swarm safety enhancement based on the existing analytic configuration. 展开更多
关键词 Collision avoidance Passive safety Relative Eccentricity/Inclination(E/I)vectors Spacecraft swarm flying Swarm configuration design
原文传递
Optimization Configuration Analysis of Wind-Solar-Storage System Based on HOMER
19
作者 Daixuan Zhou Zhichao Wang +2 位作者 Kaile Xi Chong Zuo Yan Jia 《Energy Engineering》 2025年第5期2119-2153,共35页
HOMER(Hybrid OptimizationModel for Electric Renewables)is an effective simulation and optimization platform for hybrid renewable energy.By inputting specific users’energy resource data(such as wind speed,solar radiat... HOMER(Hybrid OptimizationModel for Electric Renewables)is an effective simulation and optimization platform for hybrid renewable energy.By inputting specific users’energy resource data(such as wind speed,solar radiation,etc.)and load data,and by determining the types and models of components selected by the user,HOMER calculates and simulates the operational status of each component at every time step.Ultimately,it computes the energy balance of the system within specified constraints to simulate the overall system operation.This approach enables the reasonable determination of system component capacities,the evaluation of system feasibility,and the calculation of costs over the entire lifecycle of the system.In response to the challenges of matching capacities and high construction costs in wind-solar-storage multi-energy complementary power generation systems,This paper addresses issues such as difficulty in matching component capacities,high construction costs,and low system reliability in multi-energy complementary power generation systems.Using the HOMER hybrid renewable energy simulation and optimization platform,we constructed various hybrid energy systems for a specific region and considered multiple power supply modes.Thesoftware was used to solve for the optimal capacities and costs of each system.Four scenarios were analyzed:grid-only,grid-connected(purchase-sale)wind-solar-storage system,grid-connected(sale)wind-solar-storage system,and off-grid wind-solar-storage system.The results were compared and analyzed.HOMER can assess systemfeasibility and calculate the cost over its entire lifecycle.By inputting 8760 h of wind and solar resource data and load data for a specific region,and considering multiple system structures and power supply modes,the configuration results were evaluated using indicators such as cost and renewable energy utilization ratio.The simulation results indicate that the Net Present Cost(NPC)values across four different scenarios range from 1,877,292 CNY to 3,222,724 CNY,demonstrating significant cost differences.Among these scenarios,the grid-connected(purchase-sell)wind-solarstorage system exhibited the lowest NPC and the highest renewable energy utilization rate.Compared to a system relying solely on the grid,the NPC was reduced by 305,695 CNY,and the renewable energy utilization rate reached 74.7%. 展开更多
关键词 Wind-solar-storage system HOMER software capacity optimization configuration
在线阅读 下载PDF
Correction to High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation
20
《Energy & Environmental Materials》 2025年第4期296-296,共1页
P.Li,J.Zhong,Y.Fu,Z.Du,L.Jiang,Y.Han,J.Luxa,B.Wu,Z.Sofer,Q.Wei,W.Yang.High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen ... P.Li,J.Zhong,Y.Fu,Z.Du,L.Jiang,Y.Han,J.Luxa,B.Wu,Z.Sofer,Q.Wei,W.Yang.High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation.Energy Environ.Mater.2024,7,e12716. 展开更多
关键词 enhanced hydrogen oxidation nitrogen configuration optimization anion exchange membrane fuel cells high performance anion exchange membrane fuel cells graphene coated nickel
在线阅读 下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部