期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Handling Label Noise in Air Traffic Complexity Evaluation Based on Confident Learning and XGBoost 被引量:1
1
作者 ZHANG Minghua XIE Hua +2 位作者 ZHANG Dongfang GE Jiaming CHEN Haiyan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期936-946,共11页
Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air tr... Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation. 展开更多
关键词 air traffic complexity evaluation label noise confident learning XGBoost
在线阅读 下载PDF
China's Teaching Patterns Being Challenged -- Asking for Student-centered Method
2
作者 Wei Li 《Sino-US English Teaching》 2005年第5期73-75,共3页
The author tries to point out the right class teaching patterns and the important roles of teachers in class compared with the traditional teaching method---teacher-centered way. Examples are also employed to show the... The author tries to point out the right class teaching patterns and the important roles of teachers in class compared with the traditional teaching method---teacher-centered way. Examples are also employed to show the correct ways for students to learn more and better, to have more confidence and ease in English acquisition. 展开更多
关键词 teacher-centered method student-centered method better learning effect confidence
在线阅读 下载PDF
Interactivemedical image segmentation with self-adaptive confidence calibration
3
作者 Chuyun SHEN Wenhao LI +6 位作者 Qisen XU Bin HU Bo JIN Haibin CAI Fengping ZHU Yuxin LI Xiangfeng WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第9期1332-1348,共17页
Interactive medical image segmentation based on human-in-the-loop machine learning is a novel paradigm that draws on human expert knowledge to assist medical image segmentation.However,existing methods often fall into... Interactive medical image segmentation based on human-in-the-loop machine learning is a novel paradigm that draws on human expert knowledge to assist medical image segmentation.However,existing methods often fall into what we call interactive misunderstanding,the essence of which is the dilemma in trading off short-and long-term interaction information.To better use the interaction information at various timescales,we propose an interactive segmentation framework,called interactive MEdical image segmentation with self-adaptive Confidence CAlibration(MECCA),which combines action-based confidence learning and multi-agent reinforcement learning.A novel confidence network is learned by predicting the alignment level of the action with short-term interaction information.A confidence-based reward-shaping mechanism is then proposed to explicitly incorporate confidence in the policy gradient calculation,thus directly correcting the model’s interactive misunderstanding.MECCA also enables user-friendly interactions by reducing the interaction intensity and difficulty via label generation and interaction guidance,respectively.Numerical experiments on different segmentation tasks show that MECCA can significantly improve short-and long-term interaction information utilization efficiency with remarkably fewer labeled samples.The demo video is available at https://bit.ly/mecca-demo-video. 展开更多
关键词 Medical image segmentation Interactive segmentation Multi-agent reinforcement learning confidence learning Semi-supervised learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部