期刊文献+
共找到6,027篇文章
< 1 2 250 >
每页显示 20 50 100
UN Conducts AIDS Research In Guangdong
1
《China Population Today》 2001年第6期13-13,共1页
关键词 AIDS In UN conducts AIDS Research In Guangdong
暂未订购
LM-3C Conducts 200th Launch for CALT, Completing BeiDou 2 Satellite Navigation System
2
作者 REN Yueming 《Aerospace China》 2019年第2期58-58,共1页
China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing ... China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing time on May 17,2019. The LM-3C carrier rocket was developed by the China Academy of Launch Vehicle Technology (CALT),This was the 101st mission of the LM-3 series launch vehicle,the 200th mission of the LM launch vehicle family that was developed by CALT and the 304th mission of the LM family. 展开更多
关键词 China conducts LAUNCH
暂未订购
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review 被引量:1
3
作者 RONG Xian YANG Yuqi ZHANG Jianxin 《材料导报》 北大核心 2025年第13期278-290,共13页
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to... In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life. 展开更多
关键词 vacuum insulation panel thermal conductivity thermal insulation energy conservation
在线阅读 下载PDF
Alternative Strategy for Development of Dielectric Calcium Copper Titanate‑Based Electrolytes for Low‑Temperature Solid Oxide Fuel Cells 被引量:1
4
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Zuhra Tayyab Matej Veis MAKYousaf Shah Naveed Mushtaq Dmitry Medvedev Yibin Tian Chen Xia Martin Motola Bin Zhu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期310-332,共23页
The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developi... The development of low-temperature solid oxide fuel cells(LT-SOFCs)is of significant importance for realizing the widespread application of SOFCs.This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs.In this context,for the first time,a dielectric material,CaCu_(3)Ti_(4)O_(12)(CCTO)is designed for LT-SOFCs electrolyte application in this study.Both individual CCTO and its heterostructure materials with a p-type Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ)(NCAL)semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450–550℃.The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm^(-2) and an open-circuit voltage(OCV)of 0.95 V at 550℃,while the cell with the CCTO–NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm^(-2) along with a higher OCV over 1.0 V,which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk.It is found that these promising outcomes are due to the interplay of the dielectric material,its structure,and overall properties that led to improve electrochemical mechanism in CCTO–NCAL.Furthermore,density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO–NCAL.Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs. 展开更多
关键词 LT-SOFCs Dielectric CaCu_(3)Ti_(4)O_(12) Semiconductor Ni_(0.8)Co_(0.15)Al_(0.05)LiO_(2−δ) Ionic conductivity Heterostructure electrolyte
在线阅读 下载PDF
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:3
5
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 Thermal energy storage Phase change material Supporting material Carbon-based material Thermal conductivity Shape-stabilized composite
原文传递
Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution 被引量:2
6
作者 Mengdi Gan Liping Lai +5 位作者 Jiankun Wang Jun Wang Lin Chen Jingjin He Jing Feng Xiaoyu Chong 《Journal of Materials Science & Technology》 2025年第6期79-94,共16页
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te... Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs. 展开更多
关键词 Thermal barrier coating(TBCs) High-entropy rare earth oxides(HEOs) High-temperature phase stability Oxygen-ionic conductivity Thermal conductivity
原文传递
New insights into Earth's mantle conductivity and water distribution using Macao Science Satellite-1 data 被引量:2
7
作者 ZhengYong Ren YiFei Xie +3 位作者 ChaoJian Chen HongBo Yao JingTian Tang Keke Zhang 《Earth and Planetary Physics》 2025年第3期595-606,共12页
Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rat... Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rates. As electrical conductivity in the Earth's interior is highly sensitive to water content, it is an important geophysical parameter for understanding the deep Earth water content. Since its launch on May 21, 2023, the MSS-1(Macao Science Satellite-1) mission has operated for nearly one year, with its magnetometer achieving a precision of higher than 0.5 nT after orbital testing and calibration. Orbiting at 450 kilometers with a unique 41-degree inclination, the satellite enables high-density observations across multiple local times, allowing detailed monitoring of low-latitude regions and enhancing data for global conductivity imaging. To better understand the global distribution of water within the Earth's interior, it is crucial to study internal conductivity structure and water content distribution. To this aim, we introduce a method for using MSS-1 data to estamate induced magnetic fields related to magnetospheric currents. We then develop a trans-dimensional Bayesian approach to reveal Earth's internal conductivity, providing probable conductivity structure with an uncertainty analysis. Finally, by integrating known mineral composition, pressure, and temperature distribution within the mantle, we estimate the water content range in the mantle transition zone, concluding that this region may contain the equivalent of up to 3.0 oceans of water, providing compelling evidence that supports the hypothesis of a deep water cycle within the Earth's interior. 展开更多
关键词 Macao Science Satellite-1 mantle conductivity water content
在线阅读 下载PDF
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
8
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 Conductive mof nanocomposites Electromagnetic wave absorption MOF/conducting polymer Electrical conductivity Zr-MOF/PPy
原文传递
Synthesis and characterization of Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/5)Bi_(1/5))_(x)O_(2-δ)solid electrolyte for SOFCs 被引量:1
9
作者 Minzheng Zhu Chang Du +4 位作者 Rui Zhou Dong Li Shiqi Wang Chang'an Tian Chao Chen 《Journal of Rare Earths》 2025年第4期774-783,I0005,共11页
This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5... This study focuses on the impact of Gd^(3+),Sm^(3+),Er^(3+).Y^(3+),and Bi^(3+)multi-doping on the crystal structure,microscopic surface features,and ionic conductivity of cerium dioxide in the Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/)_5Bi_(1/5))_(x)O_(2-δ)(GSEYB)system.This system holds promise as a solid electrolyte material for low and medium-temperature solid oxide fuel cells.The powders of Ce_(1-x)(Gd_(1/5)Sm_(1/5)Er_(1/5)Y_(1/5)Bi_(1/5))_(x)O_(2-δ)(x=0,0.10,0.15,0.20,0.25,0.30)were synthesized using the solid-phase reaction method.The GSEYB electrolytes were comprehensively investigated for their phase structure,microstructure,oxygen vacancy concentration,and ionic conductivity using X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),and impedance spectroscopy.XRD diffraction patterns confirm a cubic fluorite-type structure with Fm3m space groups in all multi-doped systems.After sintering at 1400℃for 10 h,the relative density of doped samples exceeds 96%.In terms of electrical properties,the Ce_(0.75)Gd_(0.05)Sm_(0.05)Er_(0.05)Y_(0.05)Bi_(0.05)O_(2-δ)(x=0.25)electrolyte exhibits the highest ionic conductivity(σ_(t)=4.45×10^(-2)S/cm)and the lowest activation energy(E_(a)=0.79 eV)at 800℃.The coefficient of thermal expansion of the developed electrolyte aligns well with that of the commonly used electrode materials.This compatibility positions it as a highly promising candidate for utilization as an electrolyte material in solid oxide fuel cells(SOFCs). 展开更多
关键词 SOFCS Electrolytes Ionic conductivity Multi-doped Rare earths
原文传递
Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks 被引量:1
10
作者 Liyu Zhu Hongbin Yang +2 位作者 Ting Xu Feng Shen Chuanling Si 《Nano-Micro Letters》 2025年第4期230-274,共45页
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development ... Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity,designability,and porosity.In particular,several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors,such as charged network construction,ligand functionalization,metal-center manipulation,defective engineering,vip molecule incorporation,and pore-space manipulation.With the implementation of these strategies,proton-conducting MOFs have developed significantly and profoundly within the last decade.Therefore,in this review,we critically discuss and analyze the fundamental principles,design strategies,and implementation methods targeted at improving the proton conductivity of MOFs through representative examples.Besides,the structural features,the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously.Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research.We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials. 展开更多
关键词 MOFS Proton conduction Porous materials Fuel cells
在线阅读 下载PDF
Metal ion-crosslinked thermoconductive sugar-functionalized graphene fluoride-based cellulose papers with enhanced mechanical properties and electrical insulation 被引量:1
11
作者 Tae-Hyeong Jeong Pyeong-Jun Park +3 位作者 Sebastian Anand Dineshkumar Mani Jun-Beom Kim Sung-Ryong Kim 《Journal of Materials Science & Technology》 2025年第11期204-213,共10页
Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crossl... Thermally conductive papers with electrical insulation and mechanical robustness are essential for efficient thermal management in modern electronics.In this study,we introduced a metal ion-assisted interfacial crosslinking strategy to strengthen sugarfunctionalized graphene fluoride(SGF)and cellulose nanofibers(CNF)by hydrogen bonding and metal ion crosslinking that leads to simultaneous enhancements in thermal conductivity and mechanical properties.The facile sugarassisted ball-milling exfoliation method was developed to achieve the exfoliation of graphite fluoride and hydroxyl group functionalization on the surface of graphene fluoride.Thanks to the good dispersibility of the SGF sheets in water,the flexible SGF/CNF composite papers with hydrogen bonding were prepared via vacuum-assisted filtration.We introduced hydrogen bonding and metal ion crosslinking into SGF/CNF papers to obtain densely packed composite papers.Ca^(2+)or Al^(3+)ion-crosslinked SGF/CNF papers exhibited superior thermal and mechanical properties owing to hydrogen bonding and metal ion crosslinking.SGF/CNF-Ca^(2+)and SGF/CNF-Al^(3+)papers at 50 wt%of SGF yield in-plane thermal conductivities of 72.93 and 75.02 W m^(-1) K^(-1),and tensile strengths of 121.5 and 135.7 MPa,respectively.A thermal percolation value was observed at 12.6 vol%of SGF filler content.In addition,the SGF/CNF papers exhibited electrical insulation properties.These remarkable characteristics of the metal ion-crosslinked SGF/CNF papers are attributed to the densely packed structures caused by the strong interfacial interactions from hydrogen bonding as well as metal ion-crosslinking that could promote phonon transport.High-performance metal ion-crosslinked SGF/CNF papers with these fascinating advantages offer great potential for the thermal management of flexible electronics. 展开更多
关键词 Thermal conductivity Mechanical robustness Metal ion-crosslinking Graphenefluoride Electrical insulation
原文传递
Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers 被引量:1
12
作者 Yuntong Wang Shengchong Hui +6 位作者 Zhaoxiaohan Shi Zijing Li Geng Chen Tao Zhang Xinyue Xie Limin Zhang Hongjing Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期738-746,共9页
Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction... Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood.In this study,we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride(ChCl)and ethylene glycol(EG).Owing to the unique properties of deep eutectic gels,the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded.Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG,with HB-induced conductive loss following similar pat-terns.At a ChCl and EG molar ratio of 2.4,the gel labeled G22-CE2.4 exhibited the best EMW absorption performance,characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm.This superior performance is attributed to the synergistic ef-fects of excellent conductive loss and impedance matching generated by the optimal number of HB.This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers. 展开更多
关键词 ABSORBERS hydrogen bonds deep eutectic gels dielectric properties conduction loss
在线阅读 下载PDF
Effects of La and Ce on the microstructure,thermal conductivity and strength synergy of the as-extruded Mg-Mn-RE alloys 被引量:1
13
作者 Huafeng Liu Taiki Nakata +6 位作者 Chao Xu Guangze Tang Danyang Li Xiaojun Wang Guisong Wang Shigeharu Kamado Lin Geng 《Journal of Magnesium and Alloys》 2025年第2期654-667,共14页
High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabrica... High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabricated via hot extrusion.The effects of La and Ce additions on the microstructure,thermal conductivity,and mechanical properties of the Mg-1.5Mn alloy were investigated.The results indicated that both the as-extruded Mg-1.5Mn-2.5La and Mg-1.5Mn-2.5Ce alloys exhibited a bimodal grain structure,with dynamically precipitated nano-scaleα-Mn phases.In comparison with La,the addition of Ce enhanced the dynamic precipitation more effectively during hot extrusion,while its influence on promoting the dynamic recrystallization was relatively weaker.The high tensile strength obtained in the as-extruded Mg-1.5Mn-2.5RE alloys can be attributed to the combined influence of the bimodal grain structure(with fine dynamic recrystallized(DRXed)grain size and high proportion of un-dynamic recrystallized(unDRXed)grains),dense nano-scale precipitates,and broken Mg12RE phases,while the remarkable thermal conductivity was due to the precipitation of Mn-rich phases from the Mg matrix. 展开更多
关键词 Mg-Mn-RE alloys Thermal conductivity Mechanical properties Dynamic precipitation
在线阅读 下载PDF
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
14
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors Ionic conductivity Chemical stability Li-ion battery
原文传递
Highly Thermally Conductiveand Flame-Retardant Waterborne Polyurethane Composites with 3D BNNS Bridging Structures via MagneticField Assistance 被引量:1
15
作者 Hao Jiang Yuhui Xie +7 位作者 Mukun He Jindao Li Feng Wu Hua Guo Yongqiang Guo Delong Xie Yi Mei Junwei Gu 《Nano-Micro Letters》 2025年第6期279-296,共18页
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in ... The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields. 展开更多
关键词 Boron nitride nanosheets Magnetic response Structural design Thermal conductivity Flame retardancy
在线阅读 下载PDF
Inter‑Skeleton Conductive Routes Tuning Multifunctional Conductive Foam for Electromagnetic Interference Shielding,Sensing and Thermal Management
16
作者 Xufeng Li Chunyan Chen +10 位作者 Zhenyang Li Peng Yi Haihan Zou Gao Deng Ming Fang Junzhe He Xin Sun Ronghai Yu Jianglan Shui Caofeng Pan Xiaofang Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期19-36,共18页
Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.Howev... Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.However,its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation.Here,an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton(denoted as AMLM-PM foam).Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films.Therefore,the resistance change of AMLM-PM reaches four orders of magnitude under compression.Moreover,the inter-skeleton conductive films can improve the mechanical strength of foam,prevent the leakage of liquid metal and increase the scattering area of EM wave.AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness,solving the problem of traditional CPFs upon compression.The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function. 展开更多
关键词 Inter-skeleton conductive films Conductive polymer foam Liquid metal Electromagnetic interference shielding
在线阅读 下载PDF
Ultrasensitive electrospinning fibrous strain sensor with synergistic conductive network for human motion monitoring and human-computer interaction 被引量:1
17
作者 Jingwen Wang Shun Liu +6 位作者 Zhaoyang Chen Taoyu Shen Yalong Wang Rui Yin Hu Liu Chuntai Liu Changyu Shen 《Journal of Materials Science & Technology》 2025年第10期213-222,共10页
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ... With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases. 展开更多
关键词 Flexible strain sensors Synergistic conductive network Electrospinning fibrous membrane Motion monitoring Human-machine interface
原文传递
Exploring the novel role of oligodendrocyte precursor cells in phagocytosis:beyond myelinogenesis
18
作者 Gen Hamanaka Ken Arai 《Neural Regeneration Research》 SCIE CAS 2025年第2期473-474,共2页
Roles of oligodendrocyte precursor cells in the central nervous system:Oligodendrocyte precursor cells(OPCs)have long been recognized for their critical role as precursors to oligodendrocytes,the primary myelin-produc... Roles of oligodendrocyte precursor cells in the central nervous system:Oligodendrocyte precursor cells(OPCs)have long been recognized for their critical role as precursors to oligodendrocytes,the primary myelin-producing cells.As precursors,OPCs mature and differentiate into oligodendrocytes,which contribute significantly to the formation of myelin sheaths around axons.This myelination,which is critical for the conduction of salutatory nerve impulses in the cerebral white matter,underscores the classical role of oligodendrocytes in central nervous system(CNS)functionality.Importantly,because oligodendrocytes are differentiated cells that cannot proliferate. 展开更多
关键词 CRITICAL system conduction
暂未订购
Fabrication and Mechano-sensing Characteristics of Bending Polypyrrole Actuator
19
作者 CHEN Jinyou HU Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期240-245,共6页
To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical character... To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper. 展开更多
关键词 conductive polymer POLYPYRROLE mechanical characteristics actuators sensing characteristics
原文传递
Like a G6-nal:transcriptional control of G-protein coupled receptors during oligodendroglial development
20
作者 Tim Aberle Michael Wegner 《Neural Regeneration Research》 SCIE CAS 2025年第7期2001-2002,共2页
Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken u... Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken up by oligodendrocytes.Oligodendrocytes are marked by the expression of the lineage determinants Sox10 and Olig2 and arise from oligodendrocyte precursor cells(OPCs)during embryonal stages.While the majority of OPCs differentiate into mature oligodendrocytes when nearby axonal segments require myelination,a small subpopulation of OPCs persist as a progenitor pool.Therefore,the timing of myelination and maintenance of the OPC pool both need to be precisely regulated.Different transcription factors either positively or negatively affect oligodendrocyte differentiation and maintenance of the OPC pool as components of a complex gene regulatory network(reviewed in Sock and Wegner,2021).Network activity is additionally influenced by extracellular signaling molecules that bind to receptors on the oligodendroglial cell surface and activate intracellular signaling pathways.How the receptors are linked to the network is poorly understood so far,but pivotal to understanding the overall regulation of central nervous system(CNS)myelination in response to environmental cues.Relevant insights were recently gained for Gpr37(Schmidt et al.,2024),a G-protein coupled receptor(GPCR)with known relevance in differentiating oligodendrocytes(Yang et al,2016). 展开更多
关键词 gained INSULATION conduction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部