期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Ultrasensitive electrospinning fibrous strain sensor with synergistic conductive network for human motion monitoring and human-computer interaction 被引量:1
1
作者 Jingwen Wang Shun Liu +6 位作者 Zhaoyang Chen Taoyu Shen Yalong Wang Rui Yin Hu Liu Chuntai Liu Changyu Shen 《Journal of Materials Science & Technology》 2025年第10期213-222,共10页
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ... With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases. 展开更多
关键词 Flexible strain sensors Synergistic conductive network Electrospinning fibrous membrane Motion monitoring Human-machine interface
原文传递
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:3
2
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
在线阅读 下载PDF
Constructing globally consecutive 3D conductive network using P-doped biochar cotton fiber for superior performance of silicon-based anodes 被引量:3
3
作者 Jun Cao Jianhong Gao +6 位作者 Kun Wang Zhuoying Wu Xinxin Zhu Han Li Min Ling Chengdu Liang Jun Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期181-191,共11页
The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by... The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs. 展开更多
关键词 3D conductive network Biochar carbon-silicon anode Heteroatoms doping strategy DFT calculation Lithium-ion battery
原文传递
Multiple conductive network for KTi_(2)(PO_(4))_(3)anode based on MXene as a binder for high-performance potassium storage
4
作者 Tong Su Yue Wang +3 位作者 Qizhen Zhu Mengyao Xu Ning Qiao Bin Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期539-544,共6页
KTi_(2)(PO_(4))_(3)is a promising anode material for potassium storage,but suffers from low conductivity and difficult balance between high capacity and good structural stability.Herein,the Ti_(3)C_(2)T_(x)MXene is us... KTi_(2)(PO_(4))_(3)is a promising anode material for potassium storage,but suffers from low conductivity and difficult balance between high capacity and good structural stability.Herein,the Ti_(3)C_(2)T_(x)MXene is used as a multifunctional binder to fabricate the KTi_(2)(PO_(4))_(3)electrode by the traditional homogenizing-coating method.The MXene nanosheets,together with the conductive agent super P nanoparticles,construct a multiple conductive network for fast electron/ion transfer and high electrochemical kinet-ics.Moreover,the network ensures the structural stability of the KTi_(2)(PO_(4))_(3)electrode during the de-intercalation/intercalation of 4 K^(+)ions,which is beneficial for simultaneously achieving high capacity and good cycle performance.Therefore,the MXene-bonded KTi_(2)(PO_(4))_(3)electrode delivers a reversible capacity of 255.2 mAh/g at 50 mA/g,outstanding rate capability with 132.3 mAh/g at 2 A/g,and ex-cellent cycle performance with 151.6 mAh/g at 1 A/g after 2000 cycles.This work not only suggests a high-performance anode material for potassium-ion batteries,but also demonstrates that the MXene is a promising binder material for constructing conductive electrodes in rechargeable batteries. 展开更多
关键词 MXene Ti_(3)C_(2)T_(x) KTi_(2)(PO_(4))_(3) ANODE conductive network Potassium storage
原文传递
Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection 被引量:11
5
作者 Jie Li He Sun +5 位作者 Shuang-Qin Yi Kang-Kang Zou Dan Zhang Gan-Ji Zhong Ding-Xiang Yan Zhong-Ming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期293-306,共14页
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne... Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices. 展开更多
关键词 Flexible conductive polymer composites Silver-plated polylactide short fiber Carbon nanotube Electromagnetic interference shielding Multi-scale conductive network
在线阅读 下载PDF
Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries 被引量:1
6
作者 Leping Dang Jiawei He Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2022年第2期132-143,共12页
Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.How... Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.However,its large volume expansion and contraction during sodiation/desodiation lead to poor cycling stability.In this work,a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes(BP/G/CNTs)composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process.The unique structure can mitigate the eff ect of volume changes and provide additional electron conduction pathways during cycles.Furthermore,the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon,thereby improving the cycling and rate performance.As a result,the BP/G/CNTs composite delivers a high initial Coulombic efficiency(89.6%)and a high specific capacity for SIBs(1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g).Based on these results,the integrated strategy of one-and two-dimensional carbon materials can guide other anode materials for SIBs. 展开更多
关键词 Sodium-ion batteries Anode material Black phosphorus Ball milling Carbon conductive network
在线阅读 下载PDF
Tuning the Electrically Conductive Network of Grafted Nanoparticles in Polymer Nanocomposites by the Shear Field 被引量:1
7
作者 Yan-Long Luo Xiao Hui Duan +3 位作者 Bin Li Xin-Ling Chen Yang Yang Gao Li-Qun Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第12期1426-1434,共9页
Contolling the formation of the conductive network in the polymer nanocomposites(PNCs)is very meaningful to enhance their electrical property.In this work,we investigated the effect of grafted nanoparticles(NPs)on the... Contolling the formation of the conductive network in the polymer nanocomposites(PNCs)is very meaningful to enhance their electrical property.In this work,we investigated the effect of grafted nanoparticles(NPs)on the conductive probability of PNCs in the quiescent state as well as under the shear field via a coarse grained molecular dynamics simulation.It is found that the smallest percolation threshold is realized at the moderate grafting density,the moderate length of grafted chains or the moderate interaction between grafted chains and free chains.Corresponding to it,the dispersion state of NPs varies from the contact aggregation to the uniform dispersion.By analyzing the connection mode among NPs,the probabilty of NPs which connect three other ones reaches the maximum value at their moderate dispersion state which is responsible for the optimal conductive probability.In addition,the main cluster size is characterized to better understand the conductive network which is consistent with the percolation threshold.It is interesting to find that the percolation threshold is smaller under the shear field than under the quiescent state.The shear field induces more NPs which connect three other ones.This benefits the formation of the new conductive network.Meanwhile,the anisotropy of the conductive probability is reduced with increasing the grafting density.In summary,this work provides a clear picture on how the conductive network of grafted NPs evolves under the shear field. 展开更多
关键词 conductive network Grafted nanoparticles Molecular dynamics simulation
原文传递
Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks 被引量:1
8
作者 Lijie Ma Xiaolin Wang +7 位作者 Xiang Chen Jianbin Gao Yiwen Wang Yuehai Song Yaran Zhao Shizhe Gao Lin Li Jianchao Sun 《Nano Research》 SCIE EI CSCD 2024年第8期7136-7143,共8页
Vanadium dioxide(VO_(2)) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries.Nevertheless,the intrinsic low electronic c... Vanadium dioxide(VO_(2)) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries.Nevertheless,the intrinsic low electronic conductivity of VO_(2) results in an unsatisfactory electrochemical performance.Herein,a flower-like VO_(2)/carbon nanotubes(CNTs)composite was obtained by a facile hydrothermal method.The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration.Meanwhile,the CNT conductive networks is in favor of fast electron transfer.A highly reversible zinc storage mechanism was revealed by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy.As a result,the VO_(2)/CNTs cathode exhibits a high reversible capacity(410 mAh·g^(−1)),superior rate performance(305 mAh·g^(−1)at 5 A·g^(−1)),and excellent cycling stability(a reversible capacity of 221 mAh·g^(−1)was maintained even after 2000 cycles).This work provides a guide for the design of high-performance cathode materials for aqueous zinc metal batteries. 展开更多
关键词 VO_(2)/carbon nanotubes morphology engineering zinc metal batteries cathode materials conductive networks
原文传递
Constructing Anisotropic Conductive Networks inside Hollow Elastic Fiber with High Sensitivity and Wide‑Range Linearity by Cryo‑spun Drying Strategy 被引量:1
9
作者 Along Zheng Kening Wan +6 位作者 Yuwen Huang Yanyan Ma Tao Ding Yong Zheng Ziyin Chen Qichun Feng Zhaofang Du 《Advanced Fiber Materials》 SCIE EI CAS 2024年第6期1898-1909,共12页
Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding abil-ity,electrical conductivity,and high resilience,making them ideal materials for fibrous weara... Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding abil-ity,electrical conductivity,and high resilience,making them ideal materials for fibrous wearable strain sensors.However,the weak interface between the conductive materials and elastic substrates restricts fibers flexibility under strain,leading to challenges in achieving both linearity and sensitivity of the as-prepared fibrous strain sensor.Herein,cryo-spun drying strategy is proposed to fabricate the thermoplastic polyurethane(TPU)fiber with anisotropic conductive networks(ACN@TPU fiber).Benefiting from the excellent mechanical properties of TPU,and the excellent interface among TPU,silver nanoparticles(AgNPs)and polyvinyl alcohol(PVA),the prepared ACN@TPU fiber exhibits an outstanding mechanical performance.The anisotropic conductive networks enable the ACN@TPU fiber to achieve high sensitivity(gauge factor,GF=4.68)and excellent linearity within a wide working range(100%strain).Furthermore,mathematical model based on AgNPs is established and the resistance calculation equation is derived,with a highly matched fitting and experimental results(R2=0.998).As a conceptual demonstration,the ACN@TPU fiber sensor is worn on a mannequin to accurately and instantly detect movements.Therefore,the successful construction of ACN@TPU fiber with anisotropic conductive networks through the cryo-spun drying strategy provides a feasible approach for the design and preparation of fibrous strain sensing materials with high linearity and high sensitivity. 展开更多
关键词 Cryo-spun drying Anisotropic conductive networks High sensitivity Wide-range linearity Fibrous wearable strain sensor
原文传递
Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High-Performance CO_(2)-to-Formate Electrocatalytic Conversion
10
作者 Liangping Xiao Rusen Zhou +4 位作者 Tianqi Zhang Xiaoxiang Wang Renwu Zhou Patrick J.Cullen Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期413-421,共9页
Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high... Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high-value organics is crucial.Electrochemical CO_(2)reduction reaction(CO_(2)RR)is highly promising to convert CO_(2)into economically viable carbon-based chemicals or fuels under mild process conditions.Herein,mesoporous indium supported on multi-walled carbon nanotubes(mp-In@MWCNTs)is synthesized via a facile wet chemical method.The mp-In@MWCNTs electrocatalysts exhibit high CO_(2)RR performance in reducing CO_(2)into formate.An outstanding activity(current density-78.5 mA cm^(-2)),high conversion efficiency(Faradaic efficiency of formate over 90%),and persistent stability(∼30 h)for selective CO_(2)-to-formate conversion are observed.The outstanding CO_(2)RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network,which promote the adsorption and desorption of reactants and intermediates while improving electron transfer.These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO_(2)conversion. 展开更多
关键词 CO_(2)RR conductive network ELECTROCATALYSTS FORMATE
在线阅读 下载PDF
Efficiently enhancing thermal conductivity of polymer bonded explosives via the construction of primary-secondary thermal conductivity networks
11
作者 Xunyi Wang Peng Wang +4 位作者 Jie Chen Zhipeng Liu Yuxin Luo Wenbin Yang Guansong He 《Defence Technology(防务技术)》 2025年第6期95-103,共9页
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr... Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity. 展开更多
关键词 Thermally conductive performance Primary-secondary thermally conductive networks network density Polymer-bonded explosives
在线阅读 下载PDF
Highly Thermally Conductive Polydimethylsiloxane Composites with Controllable 3D GO@f-CNTs Networks via Self-sacrificing Template Method 被引量:4
12
作者 Shuang-Shuang Wang Dian-Ying Feng +4 位作者 Zhi-Ming Zhang Xia Liu Kun-Peng Ruan Yong-Qiang Guo Jun-Wei Gu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第7期897-906,I0005,共11页
Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combin... Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combined to prepare“Line-Plane”-like hetero-structured thermally conductive GO@f-CNTs fillers,which are then performed to construct controllable 3D GO@f-CNTs thermal conduction networks via selfsacrificing template method based on oxalic acid.Subsequently,thermally conductive GO@f-CNTs/polydimethylsiloxane(PDMS)composites are fabricated via casting method.When the size of oxalic acid is 0.24 mm and the volume fraction of GO@f-CNTs is 60 vol%,GO@f-CNTs/PDMS composites present the optimal thermal conductivity coefficient(λ,4.00 W·m^(-1)·K^(-1)),about 20 times that of theλof neat PDMS(0.20 W·m^(-1)·K^(-1)),also much higher than theλ(2.44 W·m^(-1)·K^(-1))of GO/f-CNTs/PDMS composites with the same amount of randomly dispersed fillers.Meanwhile,the obtained GO@f-CNTs/PDMS composites have excellent thermal stability,whoseλdeviation is only about 3%after 500 thermal cycles(20-200℃). 展开更多
关键词 POLYDIMETHYLSILOXANE Hetero-structured thermally conductive fillers Self-sacrificing template Thermal conduction networks
原文传递
Enhancing micro-scale SiO_(x)anode durability:Electro-mechanical strengthening of binder networks via anchoring carbon nanotubes with carboxymethyl cellulose
13
作者 Chaeyeon Ha Jin Kyo Koo +1 位作者 Jun Myoung Sheem Young-Jun Kim 《Journal of Energy Chemistry》 2025年第2期23-33,I0002,共12页
With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its ... With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes. 展开更多
关键词 LITHIUM-IONBATTERIES Siox anode Blended anode Carbon nanotubes Carboxymethyl cellulose conductive binder network
在线阅读 下载PDF
Polymer-based EMI shielding composites with 3D conductive networks:A mini-review 被引量:43
14
作者 Lei Wang Zhonglei Ma +3 位作者 Yali Zhang Lixin Chen Dapeng Cao Junwei Gu 《SusMat》 2021年第3期413-431,共19页
High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the norma... High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected. 展开更多
关键词 3D conductive networks conductive polymer composites polymer-based EMI shielding mate-rials
原文传递
B-doped SiO_(x) composite with three dimensional conductive network for high performance lithium-ion battery anode 被引量:1
15
作者 Wenjie He Tengfei Zhang +5 位作者 Zhiwei Li Jiangmin Jiang Chenglong Chen Nan Liu Hui Dou Xiao Gang Zhang 《Journal of Materiomics》 SCIE EI 2021年第4期802-809,共8页
Currently,the practical application of SiO_(x) still has a huge hindrance in the area of lithium ion battery,because it is unable to achieve an effective contact with surrounding conducting materials,resulting in fail... Currently,the practical application of SiO_(x) still has a huge hindrance in the area of lithium ion battery,because it is unable to achieve an effective contact with surrounding conducting materials,resulting in failure to form lithium ion migration tunnels.In this work,we presented a facile method to synthesize the B-doped SiOx composite by adhering SiO_(x) particles with MWCNT(multi-walled carbon nanotube)under the assistance of lithium metaborate(LiBO_(2)).LiBO_(2),as a sintering aid,not only can react with SiO_(x) to form a compacted framework,but also build a three-dimensional(3D)conductive network for ions transportation.Furthermore,B-SiO_(x)@CNT@LBO anode delivers a remarkable lithium storage performance in terms of long cycles and high rate capability.A full cell coupled with NCM622 cathode achieves a high energy density of 429.5 Wh kg^(-1) based on the total mass of cathode. 展开更多
关键词 Lithium-ion batteries Silicon oxides Lithium metaborate Ions and electrons transportation 3D conductive network
原文传递
Influence of conductive network composite structure on the electromechanical performance of ionic electroactive polymer actuators 被引量:1
16
作者 Reza Montazami Dong Wang James R.Heflin 《International Journal of Smart and Nano Materials》 SCIE EI 2012年第3期204-213,共10页
The influence of the nanostructure of the conductive network composite(CNC)on the performance of ionic electroactive polymer(IEAP)actuators has been examined in detail.We have studied IEAP actuators consisting of CNCs... The influence of the nanostructure of the conductive network composite(CNC)on the performance of ionic electroactive polymer(IEAP)actuators has been examined in detail.We have studied IEAP actuators consisting of CNCs with different volume densities of gold nanoparticles(AuNPs)and the polymer network.Varying the concentration of AuNPs in CNC thin films was used as a means to control the CNC-ion interfacial area and the electrical resistance of the CNC,with minimum effect on the mechanical properties of the actuator.Increasing the interfacial area and reducing the resistance,while maintaining porosity of the composite,provide means for generating motion of more ions into the CNC at a significantly shorter time,which results in generation of strain at a faster rate.We have demonstrated that cationic strain in actuators with denser CNCs is improved by more than 460%.Denser CNC structures have larger interfacial areas,which results in attraction/repulsion of more ions in a shorter time,thus generation of a larger mechanical strain at a faster rate.Also,time-dependent response to a square-wave voltage was improved by increasing the AuNP concentration in the CNC.Under 0.1 Hz frequency,the cationic strain was increased by 64%when the AuNP concentration was increased from 4 to 20 ppm. 展开更多
关键词 ionic electroactive polymer actuator functional thin film conductive network composite
在线阅读 下载PDF
Tailoring cryogenic thermal conductivity in EuTiO_(3)-based magnetic refrigeration materials
17
作者 Huicai Xie Jiaxin Jiang +5 位作者 Hao Sun Zhenxing Li Jun Liu Junfeng Wang Zhaojun Mo Jun Shen 《Journal of Rare Earths》 2025年第5期997-1002,共6页
As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal con... As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal conductivity of many competitive oxide-based magnetic refrigerants,exemplified by EuTiO3-based compounds,acts as a major limitation to their practical application.Therefore,improving the thermal conductivity of magnetic refrigeration materials has become a research emphasis of magnetic refrigeration in recent years.In this work,a series of EuTiO_(3)(ETO)/Cu composites with different copper additives was prepared using a solid-phase reaction method by introducing appropriate amounts of copper powder.The influence of the introduction of copper on the phase composition,microstructure,thermal conductivity,and magnetocaloric effect of the composites was systematically investigated.Unexpectedly,the thermal conductivity of the composites is enhanced by up to 260%due to copper addition,accompanied by only a 5%decrease in magnetic entropy change and refrigerating capacity.Copper additive forms localized thermal conductive networks and promotes the densification process,resulting in significantly enhanced thermal conductivity of the composites.This work demonstrates the feasibility of improving the thermal conductivity of oxide-base d magnetic refrigeration materials by introducing highly thermally conductive substances. 展开更多
关键词 Thermal conductivity EuTiO_(3) Magnetic refrigeration Rare earths Thermal conductive network
原文传递
Multifunctional Carbon Foam with Nanoscale Chiral Magnetic Heterostructures for Broadband Microwave Absorption in Low Frequency
18
作者 Hao Zhang Kaili Kuang +6 位作者 Yifeng Zhang Chen Sun Tingkang Yuan Ruilin Yin Zeng Fan Renchao Che Lujun Pan 《Nano-Micro Letters》 2025年第6期181-197,共17页
The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challengin... The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms.Herein,the chiral CNCs are first synthesized on a threedimensional(3D)carbon foam and then combined with the FeNi/NiFe_(2)O_(4) nanoparticles to form a novel chiral-dielectric-magnetic trinity foam.The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss.The formation of the FeNi-carbon interfaces induces interfacial polarization loss,which is confirmed by the density functional theory calculations.Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects,which enhance the magnetic anisotropy and magnetic loss capability.Owing to the synergistic effect between dielectricity,chirality,and magnetism,the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth(EAB)of 14 GHz and a minimum reflection of loss less than-50 dB.More importantly,the C-band EAB of the foam is extended to 4 GHz,achieving the full C-band coverage.This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption. 展开更多
关键词 Carbon nanocoils Chiral magnetic structures 3D conductive networks Magnetic pinning effect Broadband microwave absorption
在线阅读 下载PDF
Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites 被引量:7
19
作者 Shou-Jun Li Jing-Chao Li +3 位作者 Pei-ZhiJi Wen-Feng Zhang Yong-Lai Lu Li-Qun Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第7期789-795,共7页
With the continuous development of the electronics industry,the energy density of modern electronic devices increases constantly,thus releasing a lot of heat during operation.Modern electronic devices take higher and ... With the continuous development of the electronics industry,the energy density of modern electronic devices increases constantly,thus releasing a lot of heat during operation.Modern electronic devices take higher and higher request to the thermal interface materials.Achieving high thermal conductivity needs to establish an interconnecting thermal conductivity network in the matrix.For this purpose,the suspension of Al203 and curdlan was first foamed to construct a bubble-templated continuous ceramic framework.Owing to the rapid gelation property of curdlan,we can easily remove moisture by hot air drying.Finally,the high thermally conductive composites are prepared by vacuum impregnation of silicone rubber.The result showed that composites prepared by our method have higher thermal conductivity than the samples obtained by traditional method.The thermal conductivity of the prepared composite material reached 1.253 W·m^(-1)·K·^-(1)when the alumina content was 69.6 wt%.This facile method is expected to be applied to the preparation of high-performance thermal interface materials. 展开更多
关键词 Thermally conductive network ALUMINA CURDLAN Thermal conductivity
原文传递
Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites 被引量:2
20
作者 Zhuoya Wang Kaihang Zhang +4 位作者 Bing Zhang Zheming Tong Shulan Mao Hao Bai Yingying Lu 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1401-1410,共10页
Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limi... Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limitation and possible leakage of electricity during charge process,emerging phase change materials as solid cooling media are of growing interest.Among them,paraffin wax(PW)with large latent heat capacity and low cost is desirable for heat dissipation and thermal management which mainly hindered by their relatively low thermal conductivity and susceptibility to leakage.Here,highly ordered and interconnected hexagonal boron nitride(h-BN)networks were established via ice template method and introduced into PW to enhance the thermal conductivity.The composite with 20 wt%loading amount of h-BN can guarantee a highly ordered network and exhibited high thermal conductivity(1.86 W m^(-1) K^(-1))which was 4 times larger compared with that of random dispersed h-BN involved PW and nearly 8 times larger compared with that of bare PW.The optimal thermal conductive composites demonstrated ultrafast heat dissipation as well as leakage resistance for lithium-ion batteries(LIBs),heat generated by LIBs can be effectively transferred under the working state and the surface temperature kept 6.9℃ lower at most under 2–5℃ continuous charge-discharge process compared with that of bare one which illustrated great potential for industrial thermal management. 展开更多
关键词 Hexagonal boron nitride Paraffin wax Lithium-ion batteries Thermal conductive network Battery heat dissipation
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部