We consider a distribution system with one supplier and two retailers. For the two retailers, they face different demand and are both risk averse. We study a single period model which the supplier has ample goods and ...We consider a distribution system with one supplier and two retailers. For the two retailers, they face different demand and are both risk averse. We study a single period model which the supplier has ample goods and the retailers order goods separately. Market search is measured as the fraction of customers who unsatisfied with their "local" retailer due to stock-out, and search for the goods at the other retailer before leaving the system. We investigate how the retailers game for order quantity in a Conditional Value-at-Risk framework and study how risk averse degree, market search level, holding cost and backorder cost influence the optimal order strategies. Furthermore, we use uniform distribution to illustrate these results and obtain Nash equilibrium of order strategies.展开更多
We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional va...We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induc...We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.展开更多
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribu...Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic...The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.展开更多
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ...A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.展开更多
The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availabi...The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availability and is constrained by air temperature,it is important to project the changes in the distribution of atmospheric humidity conditional on air temperature as the climate continuously warms.Here,a non-crossing quantile smoothing spline is employed to build quantile regression models emulating conditional distributions of dew point(a measure of humidity)on local temperature evolving with escalating global mean surface temperature.By applying these models to 297 weather stations in seven regions in China,the study analyzes historical trends of humid-heat and dry-hot days,and projects their changes under global warming of 2.0℃ and 4.5℃.In response to global warming,rising trends of humid-heat extremes,while weakening trends of dry-hot extremes,are observed at most stations in Northeast China.Additionally,results indicate an increasing trend in dry-hot extremes at numerous stations across central China,but a rise in humid-heat extremes over Northwest China and coastal regions.These trends found in the current climate state are projected to intensify under 2.0℃ and 4.5℃ warming,possibly influenced by the heterogeneous variations in precipitation,soil moisture,and water vapor fluxes.Requiring much lower computational resources than coupled climate models,these quantile regression models can further project compound humidity and temperature extremes in response to different levels of global warming,potentially informing the risk management of compound humid-heat extremes on a local scale.展开更多
Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than...Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than standard relative survival(RS).This study aims to evaluate the 5-year CRS among adolescent and young adult(AYA)breast cancer patients by age,tumor stage,and receptor subtype to guide disclosure periods for insurance.Methods Data of all females aged 18–39 years and diagnosed with invasive breast cancer between 2003 and 2021(n=13,075)were obtained from The Netherlands Cancer Registry(NCR).The five-year CRS was calculated annually up to 10 years post-diagnosis using a hybrid analysis approach.Results For the total AYA breast cancer study population the 5-year CRS exceeded 90%from diagnosis and increased beyond 95%7 years post-diagnosis.Patients aged 18–24 reached 95%9 years post-diagnosis,those aged 25–29 after 5 years,and those aged 30–34 and 35–39 after 8 years.For stage I,the 5-year CRS reached 95%from diagnosis,for stage II after 6 years,while the 5-year CRS for stages III and IV did not reach the 95%threshold during the 10-year follow-up.Triple-negative tumors exceeded 95%after 4 years,human epidermal growth factor receptor 2(HER2)positive tumors after 6 years,while hormone receptor(HR)positive tumors did not reach 95%.Conclusion Excess mortality among AYA breast cancer patients tends to be little(CRS 90%–95%)from diagnosis and becomes minimal(CRS>95%)over time compared to the general population.These results can enhance expectation management and inform policymakers,suggesting a shorter disclosure period.展开更多
This paper investigates a risk-averse inventory model by balancing the expected profit and conditional value-at-risk (CVaR) in a newsvendor model setting. We find out that: i) The optimal order quantity is increas...This paper investigates a risk-averse inventory model by balancing the expected profit and conditional value-at-risk (CVaR) in a newsvendor model setting. We find out that: i) The optimal order quantity is increasing in the shortage cost for both the CVaR only criterion and the tradeoff objective, ii) For the case of zero shortage cost, the optimal order quantity to the CVaR criterion or tradeoff objective is increasing in the selling price, respectively. However, it may not be monotonic in the selling price when incorporating a substantial shortage cost. Moreover, it may be larger or less than the risk-neutral solution, iii) Under the tradeoff objective function, although the optimal order quantity for the model without shortage cost is increasing in the weight put on the expected profit, this property may not be true in general for the model with a substantial shortage cost. Some numerical examples are conducted to verify our results and observations.展开更多
For optimizing the water-use structure and increasing plantation benefit of unit water consumption,a multi-objective model for water resources utilization was established based on fractional programming(FP).Meanwhile,...For optimizing the water-use structure and increasing plantation benefit of unit water consumption,a multi-objective model for water resources utilization was established based on fractional programming(FP).Meanwhile,considering the stochasticity of water availability in the study area,the impact of the risk factor(λ)from a quantitative and qualitative perspective was analyzed.The chance-constrained programming(CCP)and conditional value-at-risk(CVaR)models were introduced into five important major grain production areas in Sanjiang Plain,and the crop planting structure under this condition was optimized.The results showed that,after optimization,overall benefit of cultivation increased from 42.07 billion Yuan to 42.47 billion Yuan,water consumption decreased from 15.90 billion m3 to 11.95 billion m3,the plantation benefit of unit water consumption increased from 2.65 Yuan/m3 to 3.55 Yuan/m3.Furthermore,the index of water consumption,benefit of cultivation and plantation benefit of unit water consumption showed an increasing trend with the increase of violation likelihood.However,through the quantification ofλfrom an economic perspective,the increasing ofλcould not enhance plantation benefit of unit water consumption significantly.展开更多
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
The conditional kernel correlation is proposed to measure the relationship between two random variables under covariates for multivariate data.Relying on the framework of reproducing kernel Hilbert spaces,we give the ...The conditional kernel correlation is proposed to measure the relationship between two random variables under covariates for multivariate data.Relying on the framework of reproducing kernel Hilbert spaces,we give the definitions of the conditional kernel covariance and conditional kernel correlation.We also provide their respective sample estimators and give the asymptotic properties,which help us construct a conditional independence test.According to the numerical results,the proposed test is more effective compared to the existing one under the considered scenarios.A real data is further analyzed to illustrate the efficacy of the proposed method.展开更多
In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru...Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef...In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
基金Supported by the National Natural Science Foundation of China (70471034, A0324666)
文摘We consider a distribution system with one supplier and two retailers. For the two retailers, they face different demand and are both risk averse. We study a single period model which the supplier has ample goods and the retailers order goods separately. Market search is measured as the fraction of customers who unsatisfied with their "local" retailer due to stock-out, and search for the goods at the other retailer before leaving the system. We investigate how the retailers game for order quantity in a Conditional Value-at-Risk framework and study how risk averse degree, market search level, holding cost and backorder cost influence the optimal order strategies. Furthermore, we use uniform distribution to illustrate these results and obtain Nash equilibrium of order strategies.
文摘We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.
文摘We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.
基金Programs for Science and Technology Development of Henan Province,grant number 242102210152The Fundamental Research Funds for the Universities of Henan Province,grant number NSFRF240620+1 种基金Key Scientific Research Project of Henan Higher Education Institutions,grant number 24A520015Henan Key Laboratory of Network Cryptography Technology,grant number LNCT2022-A11.
文摘Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金supported by the National Natural Science Foundation of China (Grant No. 42288101, 42375062, 42476192, 42275158)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)the GHfund C (202407036001)
文摘The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.
基金supported by the National Social Science Fund of China(Grand No.21XTJ001).
文摘A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.
基金supported by the National Natural Science Foundation of China[grant number 42175066]the Shanghai International Science and Technology Partnership Project[grant number 21230780200].
文摘The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availability and is constrained by air temperature,it is important to project the changes in the distribution of atmospheric humidity conditional on air temperature as the climate continuously warms.Here,a non-crossing quantile smoothing spline is employed to build quantile regression models emulating conditional distributions of dew point(a measure of humidity)on local temperature evolving with escalating global mean surface temperature.By applying these models to 297 weather stations in seven regions in China,the study analyzes historical trends of humid-heat and dry-hot days,and projects their changes under global warming of 2.0℃ and 4.5℃.In response to global warming,rising trends of humid-heat extremes,while weakening trends of dry-hot extremes,are observed at most stations in Northeast China.Additionally,results indicate an increasing trend in dry-hot extremes at numerous stations across central China,but a rise in humid-heat extremes over Northwest China and coastal regions.These trends found in the current climate state are projected to intensify under 2.0℃ and 4.5℃ warming,possibly influenced by the heterogeneous variations in precipitation,soil moisture,and water vapor fluxes.Requiring much lower computational resources than coupled climate models,these quantile regression models can further project compound humidity and temperature extremes in response to different levels of global warming,potentially informing the risk management of compound humid-heat extremes on a local scale.
基金supported by The Netherlands Organization for Scientific Research VIDI(grant number:198.007).
文摘Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than standard relative survival(RS).This study aims to evaluate the 5-year CRS among adolescent and young adult(AYA)breast cancer patients by age,tumor stage,and receptor subtype to guide disclosure periods for insurance.Methods Data of all females aged 18–39 years and diagnosed with invasive breast cancer between 2003 and 2021(n=13,075)were obtained from The Netherlands Cancer Registry(NCR).The five-year CRS was calculated annually up to 10 years post-diagnosis using a hybrid analysis approach.Results For the total AYA breast cancer study population the 5-year CRS exceeded 90%from diagnosis and increased beyond 95%7 years post-diagnosis.Patients aged 18–24 reached 95%9 years post-diagnosis,those aged 25–29 after 5 years,and those aged 30–34 and 35–39 after 8 years.For stage I,the 5-year CRS reached 95%from diagnosis,for stage II after 6 years,while the 5-year CRS for stages III and IV did not reach the 95%threshold during the 10-year follow-up.Triple-negative tumors exceeded 95%after 4 years,human epidermal growth factor receptor 2(HER2)positive tumors after 6 years,while hormone receptor(HR)positive tumors did not reach 95%.Conclusion Excess mortality among AYA breast cancer patients tends to be little(CRS 90%–95%)from diagnosis and becomes minimal(CRS>95%)over time compared to the general population.These results can enhance expectation management and inform policymakers,suggesting a shorter disclosure period.
基金This research was supported by the Social Science Foundation of the Ministry of Education of China under Grant No. 07JA630015, the National Natural Science Foundation of China under Grant Nos. 70901059 and 70901029, and the Fundamental Research Funds for the Central Universities under Grant No. 105-275171.
文摘This paper investigates a risk-averse inventory model by balancing the expected profit and conditional value-at-risk (CVaR) in a newsvendor model setting. We find out that: i) The optimal order quantity is increasing in the shortage cost for both the CVaR only criterion and the tradeoff objective, ii) For the case of zero shortage cost, the optimal order quantity to the CVaR criterion or tradeoff objective is increasing in the selling price, respectively. However, it may not be monotonic in the selling price when incorporating a substantial shortage cost. Moreover, it may be larger or less than the risk-neutral solution, iii) Under the tradeoff objective function, although the optimal order quantity for the model without shortage cost is increasing in the weight put on the expected profit, this property may not be true in general for the model with a substantial shortage cost. Some numerical examples are conducted to verify our results and observations.
基金National Natural Science Foundation of China(51479032,51579044)Yangtze River Scholars in Universities of Heilongjiang Province and Water Conservancy Science and Technology Project of Heilongjiang Province(201318,201503)The Outstanding Youth Fund of Heilongjiang Province(JC201402).
文摘For optimizing the water-use structure and increasing plantation benefit of unit water consumption,a multi-objective model for water resources utilization was established based on fractional programming(FP).Meanwhile,considering the stochasticity of water availability in the study area,the impact of the risk factor(λ)from a quantitative and qualitative perspective was analyzed.The chance-constrained programming(CCP)and conditional value-at-risk(CVaR)models were introduced into five important major grain production areas in Sanjiang Plain,and the crop planting structure under this condition was optimized.The results showed that,after optimization,overall benefit of cultivation increased from 42.07 billion Yuan to 42.47 billion Yuan,water consumption decreased from 15.90 billion m3 to 11.95 billion m3,the plantation benefit of unit water consumption increased from 2.65 Yuan/m3 to 3.55 Yuan/m3.Furthermore,the index of water consumption,benefit of cultivation and plantation benefit of unit water consumption showed an increasing trend with the increase of violation likelihood.However,through the quantification ofλfrom an economic perspective,the increasing ofλcould not enhance plantation benefit of unit water consumption significantly.
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金partially supported by Knowledge Innovation Program of Hubei Province(No.2019CFB810)partially supported by NSFC(No.12325110)the CAS Project for Young Scientists in Basic Research(No.YSBR-034)。
文摘The conditional kernel correlation is proposed to measure the relationship between two random variables under covariates for multivariate data.Relying on the framework of reproducing kernel Hilbert spaces,we give the definitions of the conditional kernel covariance and conditional kernel correlation.We also provide their respective sample estimators and give the asymptotic properties,which help us construct a conditional independence test.According to the numerical results,the proposed test is more effective compared to the existing one under the considered scenarios.A real data is further analyzed to illustrate the efficacy of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
基金the support from the National Key R&D Program of China underGrant(Grant No.2020YFA0711700)the National Natural Science Foundation of China(Grant Nos.52122801,11925206,51978609,U22A20254,and U23A20659)G.W.is supported by the National Natural Science Foundation of China(Nos.12002303,12192210 and 12192214).
文摘Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金Outstanding Youth Foundation of Hunan Provincial Department of Education(Grant No.22B0911)。
文摘In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.