The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic...The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.展开更多
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n...This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.展开更多
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simu...A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.展开更多
A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of th...A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite pararneters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "on off" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of ~CGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared.展开更多
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO ...The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.展开更多
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
Using a simplified nonlinearly theoretical grassland ecosystem proposed by Zeng et al.,we study the sensitivity and nonlinear instability of the grassland ecosystem to finiteamplitude initial perturbations with the ap...Using a simplified nonlinearly theoretical grassland ecosystem proposed by Zeng et al.,we study the sensitivity and nonlinear instability of the grassland ecosystem to finiteamplitude initial perturbations with the approach of conditional nonlinear optimal perturbation (CNOP).The results show that the linearly stable grassland (desert or latent desert) states can turn to be nonlinearly unstable with finite amplitude initial perturbations.When the precipitation is between the two bifurcation points,a large enough finite amplitude initial perturbation can induce a transition between the grassland statethe desert state or the latent desert.展开更多
New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebr...New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.展开更多
A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter's atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular ...A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter's atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter's atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter's atmosphere and to compare the stability of motions in Jupiter's atmosphere and Earth's atmosphere further.展开更多
Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are present...Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.展开更多
This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators ...This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.展开更多
In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and dualit...In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and duality results for a vector optimization problem with functions defined on a Banach space.展开更多
In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are establish...In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are established under this kind of generalized convex functions. Our results generalize the ones obtained by Preda[J Math Anal Appl, 288(2003) 365-382].展开更多
In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective...In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective programming and its saddle point theorem about cone efficient solution. We set up Mond-Weir type duality and Craven type duality for nonsmooth multiobjective programming with generalized essentially convex functions, and prove them.展开更多
In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint me...In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.展开更多
In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These co...In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.展开更多
The interaction between the typhoons Fengshen and Fung-wong over the Western Pacific in 2002 is studied with the Conditional Nonlinear Optimal Perturbation(CNOP) method.The study discovered that the CNOP method reveal...The interaction between the typhoons Fengshen and Fung-wong over the Western Pacific in 2002 is studied with the Conditional Nonlinear Optimal Perturbation(CNOP) method.The study discovered that the CNOP method reveals the process of one-way interaction between Fengshen and Fung-wong.Moreover,if the region of Fung-wong was selected for verification,the sensitivity area was mainly located in the region of Fengshen and presented a half-ring structure;if the region of Fengshen was selected for verification,most of the sensitivity areas were located in the region between the Fengshen and the subtropical high,far away from Fung-wong.This indicated that Fung-wong is mainly steered by Fengshen,but Fengshen is mainly affected by the subtropical high.The sensitivity experiment showed that the initial errors in the CNOP-identified sensitive areas have larger impacts on the verification-area prediction than those near the typhoon center and their developments take a large proportion in the whole domain.This suggests that the CNOP-identified sensitive areas do have large influence on the verification-area prediction.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 42288101, 42375062, 42476192, 42275158)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)the GHfund C (202407036001)
文摘The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.
文摘This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there.
基金provided by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao (Grant No.11-1-4-95-jch)the National Natural Science Foundation of China (Grant No. 40821092)
文摘A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.
基金supported by the National Natural Science Foundation of China(Grant No.40975063)the National Natural Science Foundation of China(Grant No.41331174)
文摘A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite pararneters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "on off" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of ~CGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
基金This work was supported by National Natural Science Foundation of China (10401041)Natural Science Foundation of Hubei Province (2004ABA009)
文摘This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.
基金provided by grants from National Natural Science Foundation of China (Nos.40905050,40805020,40830955)the state Key Development Program for Basic Research (Grant No.2006CB400503)the KZCX3-SW-230 of the Chinese Academy of Sciences (CAS),LASG Free Exploration Fund,and LASG State Key Laboratory Special Fund
文摘The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金Supported by the NSF of Chian(4080502010702050+1 种基金60704015) Supported by the Natural Science Foundation of Henan Education Department(2010A100003)
文摘Using a simplified nonlinearly theoretical grassland ecosystem proposed by Zeng et al.,we study the sensitivity and nonlinear instability of the grassland ecosystem to finiteamplitude initial perturbations with the approach of conditional nonlinear optimal perturbation (CNOP).The results show that the linearly stable grassland (desert or latent desert) states can turn to be nonlinearly unstable with finite amplitude initial perturbations.When the precipitation is between the two bifurcation points,a large enough finite amplitude initial perturbation can induce a transition between the grassland statethe desert state or the latent desert.
基金Supported by the NSF of Shaanxi Provincial Educational Department(06JK152)
文摘New classes of functions namely (V, ρ)_(h,φ)-type I, quasi (V, ρ)_(h,φ)-type I and pseudo (V, ρ)_(h,φ)-type I functions are defined for multiobjective programming problem by using BenTal's generalized algebraic operation. The examples of (V, ρ)_(h,φ)-type I functions are given. The sufficient optimality conditions are obtained for multi-objective programming problem involving above new generalized convexity.
基金The work was jointly supported by the Chinese Academy of Sciences (Grant No. KZCX3-SW-230) the National Natural Science Foundation of China (Grant Nos. 40233029 and 40221503)
文摘A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter's atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter's atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter's atmosphere and to compare the stability of motions in Jupiter's atmosphere and Earth's atmosphere further.
文摘Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.
基金Supported by Chongqing Key Lab. of Operations Research and System Engineering
文摘This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.
基金Foundation item: Supported by the National Natural Science Foundation of China(60574075) University, engaged in optimization theory and application.
文摘In this note,new classes of generalized type-I functions are introduced for functions between Banach spaces.These generalized type-I functions are then utilized to establish sufficient optimality conditions and duality results for a vector optimization problem with functions defined on a Banach space.
基金Foundation item: Supported by Hunan Provincial Natural Science Foundation of China(05JJ40103) Supported by Soft Science Research Fund of Hunan Province(2006ZK3028) Supported by Scientific Research Fund of Hunan Provincial Education Department(105B0707, 08C470)
文摘In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are established under this kind of generalized convex functions. Our results generalize the ones obtained by Preda[J Math Anal Appl, 288(2003) 365-382].
文摘In this paper, we introduce generalized essentially pseudoconvex function and generalized essentially quasiconvex function, and give sufficient optimality conditions of the nonsmooth generalized convex multi-objective programming and its saddle point theorem about cone efficient solution. We set up Mond-Weir type duality and Craven type duality for nonsmooth multiobjective programming with generalized essentially convex functions, and prove them.
基金Application investigation of conditional nonlinear optimal perturbation in typhoon adaptive observation (40830955)
文摘In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.
文摘In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are established which are further generalized to a class of Multi-objective Semi-Infinite Variational Problems. These conditions are responsible for the development of duality theory which is an extremely important feature for any class of problems, but the literature available so far lacks these necessary optimality conditions for the stated problem. A lemma is also proved to find the topological dual of as it is required to prove the desired result.
基金National Natural Science Foundation of China(41105038)National Science and Technology Support Program(2012BAC22B03)
文摘The interaction between the typhoons Fengshen and Fung-wong over the Western Pacific in 2002 is studied with the Conditional Nonlinear Optimal Perturbation(CNOP) method.The study discovered that the CNOP method reveals the process of one-way interaction between Fengshen and Fung-wong.Moreover,if the region of Fung-wong was selected for verification,the sensitivity area was mainly located in the region of Fengshen and presented a half-ring structure;if the region of Fengshen was selected for verification,most of the sensitivity areas were located in the region between the Fengshen and the subtropical high,far away from Fung-wong.This indicated that Fung-wong is mainly steered by Fengshen,but Fengshen is mainly affected by the subtropical high.The sensitivity experiment showed that the initial errors in the CNOP-identified sensitive areas have larger impacts on the verification-area prediction than those near the typhoon center and their developments take a large proportion in the whole domain.This suggests that the CNOP-identified sensitive areas do have large influence on the verification-area prediction.