期刊文献+
共找到141,992篇文章
< 1 2 250 >
每页显示 20 50 100
A review of concrete bridge surface defect detection based on deep learning
1
作者 LIAO Yanna HUANG Chaoyang Abdel-Hamid SOLIMAN 《Optoelectronics Letters》 2025年第9期562-576,共15页
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect... The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges. 展开更多
关键词 deep learning detection surface defects intelligent transformation manual visual inspectiondeep concrete bridges reducing operational riskssaving concrete bridge concrete defect detection
原文传递
Discrete Numerical Study on Type II Fracture of Partially Detached Concrete Panels in Cold Region
2
作者 Huayi Zhang Maobin Song +2 位作者 Lei Shen Nizar Faisal Alkayem Maosen Cao 《Structural Durability & Health Monitoring》 EI 2025年第1期167-191,共25页
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on ... When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed. 展开更多
关键词 Beam-string structure(BSS) concrete-filled steel tube(CFST) bending stiffness timing of concrete placement prestress-tensioning
在线阅读 下载PDF
Advanced machine learning techniques for predicting mechanical properties of eco-friendly self-compacting concrete
3
作者 Arslan Qayyum Khan Syed Ghulam Muhammad +1 位作者 Ali Raza Amorn Pimanmas 《Journal of Road Engineering》 2025年第2期213-229,共17页
This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox... This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox ratio,and slump flow.The motivation for this study stems from the increasing need to optimize concrete mix designs while minimizing environmental impact and reducing the reliance on costly physical testing.Six ML models-backpropagation neural network(BPNN),random forest regression(RFR),K-nearest neighbors(KNN),stacking,bagging,and eXtreme gradient boosting(XGBoost)-were trained and validated using a comprehensive dataset of 239 mix design parameters.The models'predictive accuracies were assessed using the coefficient of determination,mean squared error,root mean squared error,and mean absolute error.XGBoost consistently outperformed other models,achieving the coefficient of determination values of 0.999,0.933,and 0.935 for compressive strength in the training,validation,and testing datasets,respectively.Sensitivity analysis revealed that cement,silica fume,coarse aggregate,and superplasticizer positively influenced compressive strength,while water content had a negative impact.These findings highlight the potential of ML models,particularly XGBoost and RFR,in optimizing SCC mix designs,reducing reliance on physical testing,and enhancing sustainability in construction.The application of these models can lead to more efficient and eco-friendly concrete mix designs,benefiting real-world construction projects by improving quality control and reducing costs. 展开更多
关键词 Self-compacting concrete Eco-friendly concrete Machine learning model Compressive strength WORKABILITY
在线阅读 下载PDF
Discretization and assembly connection technology of cement concrete pavement structure: A review
4
作者 Mingjing Fang Longjie Xiang +3 位作者 Yao Wang Shaojie Li Hanhui Wang Hua Xie 《Journal of Road Engineering》 2025年第3期378-393,共16页
Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time ... Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field. 展开更多
关键词 Cement concrete pavement Precast concrete pavement Pavement discretization Discrete unit Assembly and connection
在线阅读 下载PDF
High-Fidelity Machine Learning Framework for Fracture Energy Prediction in Fiber-Reinforced Concrete
5
作者 Ala’a R.Al-Shamasneh Faten Khalid Karim +4 位作者 Arsalan Mahmoodzadeh Abdulaziz Alghamdi Abdullah Alqahtani Shtwai Alsubai Abed Alanazi 《Computer Modeling in Engineering & Sciences》 2025年第8期1573-1606,共34页
The fracture energy of fiber-reinforced concrete(FRC)affects the durability and structural performance of concrete elements.Advancements in experimental studies have yet to overcome the challenges of estimating fractu... The fracture energy of fiber-reinforced concrete(FRC)affects the durability and structural performance of concrete elements.Advancements in experimental studies have yet to overcome the challenges of estimating fracture energy,as the process remains time-intensive and costly.Therefore,machine learning techniques have emerged as powerful alternatives.This study aims to investigate the performance of machine learning techniques to predict the fracture energy of FRC.For this purpose,500 data points,including 8 input parameters that affect the fracture energy of FRC,are collected fromthree-point bending tests and employed to train and evaluate themachine learning techniques.The findings showed that Gaussian process regression(GPR)outperforms all other models in terms of predictive accuracy,achieving the highest R2 of 0.93 and the lowest RMSE of 13.91 during holdout cross-validation.It is then followed by support vector regression(SVR)and extreme gradient boosting regression(XGBR),whereas K-nearest neighbours(KNN)and random forest regression(RFR)show the weakest predictions.The superiority of GPR is further reinforced in a 5-fold cross-validation,where it consistently delivers an average R2 above 0.96 and ranks highest in overall predictive performance.Empirical testing with additional sample sets validates GPR’s model on the key mix parameter’s impact on fracture energy,cementing its claim.The Fly-Ash cement exhibits the greatest fracture energy due to superior fiber-matrix interaction,whereas the glass fiber dominates energy absorption amongst the other types of fibers.In addition,increasing the water-to-cement(W/C)ratio from 0.30 to 0.50 yields a significant improvement in fracture energy,which aligns well with the machine learning predictions.Similarly,loading rate positively correlates with fracture energy,highlighting the strain-rate sensitivity of FRC.This work is the missing link to integrate experimental fracture mechanics and computational intelligence,optimally and reasonably predicting and refining the fracture energy of FRC. 展开更多
关键词 Fiber-reinforced concrete fracture energy three-point bending test machine learning concretemixing optimization
在线阅读 下载PDF
Macro-mechanics and Microstructure of Nanomaterial-modified Geopolymer Concrete: A Comprehensive Review 被引量:1
6
作者 WANG Tao FAN Xiangqian +1 位作者 GAO Changsheng QU Chiyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期204-214,共11页
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu... We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete. 展开更多
关键词 NANOMATERIALS low carbon geopolymer concrete macro-mechanics MICROSTRUCTURE
原文传递
Buoyancy characteristic analysis and optimization of precast concrete slab track during casting process of self-compacting concrete 被引量:1
7
作者 Pengsong Wang Tao Xin +2 位作者 Peng Chen Sen Wang Di Cheng 《Railway Sciences》 2025年第2期159-173,共15页
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec... Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process. 展开更多
关键词 Casting process Buoyancy characteristics Precast concrete slab track SIMULATION Field test OPTIMIZATION
在线阅读 下载PDF
Transmedia seepage characteristics of slope-concrete stabilizing piles interface systems in cold regions 被引量:1
8
作者 FENG Xue WANG Boxin +2 位作者 WANG Qing CHEN Huie FU Lanting 《Journal of Mountain Science》 2025年第3期1015-1028,共14页
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration... Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment. 展开更多
关键词 SLOPE concrete stabilizing piles Interface systems Transmedia seepage Freeze–thaw cycles MICROSTRUCTURE
原文传递
Study on the formation characteristics of underwater hemispherical shaped charge jet and its penetration performance into concrete 被引量:1
9
作者 Chao Cao Jinxiang Wang +5 位作者 Lingquan Kong Kui Tang Yujie Xiao Yangchen Gu Ming Yang Jian Wang 《Defence Technology(防务技术)》 2025年第5期180-196,共17页
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh... Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water. 展开更多
关键词 Shaped charge jet Underwater penetration Formation characteristic concrete failure
在线阅读 下载PDF
Mechanical Properties of Railway High-strength Manufactured Sand Concrete:Typical Lithology,Stone Powder Content and Strength Grade
10
作者 WANG Zhen LI Huajian +3 位作者 HUANG Fali YANG Zhiqiang WEN Jiaxin SHI Henan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期194-203,共10页
In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li... In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed. 展开更多
关键词 manufactured sand concrete RAILWAY mechanical property LITHOLOGY stone powder content
原文传递
Experimental and Numerical Study of Bonding Capacity of Interface between Ultra-High Performance Concrete and Steel Tube 被引量:1
11
作者 Ruikun Xu Jiu Li +1 位作者 Wenjie Li Wei Zhang 《Structural Durability & Health Monitoring》 2025年第2期285-305,共21页
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra... This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure. 展开更多
关键词 Ultra-high performance concrete filled steel tube(UHPCFST) push-out test bonding capacity cohesive zone model
在线阅读 下载PDF
RF Optimizer Model for Predicting Compressive Strength of Recycled Concrete
12
作者 LIU Lin WANG Liuyan +1 位作者 WANG Hui SUN Huayue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期215-223,共9页
Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesi... Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings. 展开更多
关键词 machine learning recycled concrete compressive strength
原文传递
Bending Stiffness of Concrete-Filled Steel Tube and Its Influence on Concrete Placement Timing of Composite Beam-String Structure
13
作者 Zhenyu Zhang Quan Jin +4 位作者 Haitao Zhang Zhao Liu Yuyang Wu Longfei Zhang Renzhang Yan 《Structural Durability & Health Monitoring》 EI 2025年第1期55-75,共21页
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on... When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simulation technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placement first and then prestress-tensioning is proposed. 展开更多
关键词 concrete panels freeze-thaw damage compression-shear crack tension-shear crack
在线阅读 下载PDF
Analysis of Temperature-Induced Surface Stress in Concrete Bridge Piers in High-Altitude Regions
14
作者 CHEN Xin HUANG Xin +2 位作者 LIU Xu TIAN Bo GE Yong 《硅酸盐学报》 北大核心 2025年第11期3258-3272,共15页
Introduction The predominant characteristics of high-altitude climates include low air pressure,low humidity,and large diurnal temperature fluctuations.In practical engineering scenarios in high-altitude regions,many ... Introduction The predominant characteristics of high-altitude climates include low air pressure,low humidity,and large diurnal temperature fluctuations.In practical engineering scenarios in high-altitude regions,many pier surface cracks only appear several months after erection,and cyclic thermal stress is identified as the main trigger for such cracking.The thermal stress in concrete structures has been investigated for decades but remains incompletely understood.Structural engineers typically regard concrete as an isotropic material and calculate the thermal stress using code-specified coefficients of thermal expansion(CTEs)along with temperature conditions and constraints.Because the CTE of hardened cement paste is more than twice that of many aggregates,reducing the CTE of coarse aggregates can further exacerbate the thermal deformation incompatibility between the coarse aggregate and mortar matrix.In this paper,a comprehensive thermal-elastic mechanics model for pier concrete was developed to analysis the temperature-induced surface stress.Methods A series of mechanical and thermophysical tests were conducted on the diorite aggregate,ITZ cement paste,and mortar,and concrete.A test pier was constructed on open ground near the Yarlung Zangbo River at an altitude of 3800 m.The pier had a diameter of 1.8 m and height of 2 m.Temperature sensors were embedded in the cross-section at a height of 1 m,positioned along the southnorth and east-west directions.The embedding depths(distances from the pier surface)were 0,1.5,3,4.5,6,7.5,9,12,15,20,25,30,35,40,50,60,70,80 cm,and 90 cm.A model of the bridge pier concrete for surface-level analysis was constructed.The model consists of a concrete unit formed as a sphere-shell-shell composite,including the aggregate,ITZ,and mortar layers,embedded in the surface layer of a bridge pier.Outside this unit,the pier concrete was treated as an isotropic,homogeneous elastic material.The real-time internal temperature fields of high-altitude concrete bridge piers,measured on-site,were incorporated into the model.By applying thermoelastic mechanics theory and finite element solutions for plane strain problems,the three-dimensional thermal stresses on the surface layer of high-altitude bridge piers were analyzed Results and discussion During the experimental period,the lowest and highest temperatures on the bridge pier in the high-altitude region were 9.6 ℃ and 42.6 ℃,respectively.These occurred before sunrise and sunset on sunny days,respectively,corresponding to the local maximum temperature gradients during the surface heating and cooling stages,as well as the maximum temperature difference between the surface and center during these stages.The thermal stress on the pier concrete surface was obtained by superimposing the stresses caused by the uneven distribution of the internal temperature field and those caused by the incompatible thermal deformation among the different components in the surface concrete Before the erection of the upper structures,the absolute values of the tangential and vertical stresses were the same;therefore,only one curve was observed.From 22:00 to 8:00,the pier concrete surface was in tension,whereas from 11:00 to 22:00,the pier concrete surface was in compression.The surface of the pier concrete was subjected to biaxial forces of equal magnitude with a maximum compressive stress of 12.52 MPa and maximum tensile stress of 2.15 MPa,respectively at 18:00 and 8:00.According to the fatigue equation,the concrete was predicted to crack after 21 d of temperature cycling.Moreover,if humidity-induced stress is added on top of this,the tensile stress may approach or even exceed the concrete's tensile strength,thereby posing a significant risk of cracking.After the erection of upper structures,the tangential and vertical stresses no longer coincide because the upper structures have been erected.The curve of the tangential stress is unchanged,whereas the curve of the vertical stress is translated downwards by 1.57 MPa due to the structural deadweight.Therefore,the maximum tangential compressive stress remained 12.52 MPa,whereas the maximum vertical compressive stress increased to 14.09 MPa.Additionally,the maximum tangential tensile stress was 2.15 MPa,and the maximum vertical tensile stress was 0.58 MPa.According to Appendix C of GB/T 50010 and the fatigue equation,stresses are unlikely to cause cracking of the pier concrete surface.Although a higher CTE of the coarse aggregate slightly increased the maximum compressive stress,the differences among the three groups of concrete were minimal and could be ignored.Specifically,the maximum compressive stresses on the pier concrete surface were 12.54,12.45 MPa,and 12.56 MPa when using diorite,limestone,and basalt,respectively.By contrast,a lower CTE of the coarse aggregate results in a greater maximum tensile stress on the pier concrete surface.For example,when using limestone,which has a low CTE,the maximum tensile stress on the pier concrete surface is 2.28 MPa,compared to 2.17 MPa when using diorite and 2.14 MPa when using basalt.The finite element simulation results indicated that the maximum compressive stress on the pier concrete surface was 11.72 MPa,whereas the maximum tensile stress was 2.10 MPa.These results are approximately consistent with the theoretical calculations.This consistency provides mutual verification.Conclusions Surface cracking in pier concrete occurs predominantly before the erection of upper structures.Under sunny conditions,the orthogonal decomposition of the superficial stress revealed that the maximum compressive stress during the day was approximately 12.52 MPa,whereas the maximum tensile stress was approximately 2.15 MPa.This tensile stress approached the tensile strength of the C35 concrete under biaxial tension.The risk of cracking increased significantly when humidity-induced stress was considered.After the erection of upper structures,the maximum tangential tensile stress on the pier surface remained at 2.15 MPa while the maximum vertical stress decreased to 0.58 MPa,both of which are well below the tensile strength of C35 concrete under biaxial tension.Although the use of coarse aggregates with a lower coefficient of thermal expansion reduced the tensile stress induced by temperature gradients,it increased the stress owing to material deformation incompatibility,leading to a slight increase in the maximum tensile stress on the pier concrete surface. 展开更多
关键词 concretE bridge pier thermal stress temperature field deformation incompatibility coefficient of thermal expansion
原文传递
Prospective Study and Physico-Mechanical Characterisation of Granular Materials Used in the Manufacture of Ordinary Concrete in Congo
15
作者 Jarlon Brunel Makela Bienvenu Ebata-Ndion +1 位作者 Narcisse Malanda Stanislas Kevin Mbeke 《Geomaterials》 2025年第1期1-24,共24页
This research is an experimental study aimed at identifying and determining the physico-mechanical properties of various granular materials used in current concretes based on local aggregates (sands, gravels) from dif... This research is an experimental study aimed at identifying and determining the physico-mechanical properties of various granular materials used in current concretes based on local aggregates (sands, gravels) from different quarries, highlighting their intrinsic properties. The aim was also to test their specific influence on the cementitious matrix of hardened concrete. Several laboratory tests were conducted on samples from Brazzaville and Pointe-Noire. To develop a variety of concrete formulations meeting rheological criteria (deformability, bleeding, segregation) and create an optimal concrete formulation approach considering its microstructural and compacting matrix, a good granular distribution was planned, using two types of sand (rolled and crushed). This involved correcting the rolled sand with variable proportions (30% to 50%) of crushed sand. The results from the eight concrete formulations studied, using the Dreux-Gorisse method, showed that six formulations produced the expected results. Compressive strengths at 28 days ranged from 25 to 36.75 MPa. As a result, formulation 3 appears to be the best, with a mechanical strength of 36.75 MPa at 28 days, compared to formulation 1 (33.75 MPa), formulation 4 (27.25 MPa), and formulation 2 (26.65 MPa) for the Brazzaville locality. For the Pointe-Noire locality, formulation 8 was judged the best, with a characteristic mechanical strength of 29.70 MPa at 28 days, followed by formulation 7 (27.30 MPa), formulation 5 (22.80 MPa), and formulation 6 (18.30 MPa). In summary, the concretes formulated with raw sand showed better results than those with improved sands. The same was true for concrete formulations using rolled sand and gravel. 展开更多
关键词 SAND GRAVEL CEMENT FORMULATION Identification concrete Physical-Mechanical Properties
在线阅读 下载PDF
Fully Recycled Syntheses Using Recycled Concrete Powder, Oyster Shell and Wood Powder: Effect of Combined Ground Treatment on Mechanical Strength and FTIR, XRD, and SEM Characterization
16
作者 Ejazulhaq Rahimi Yuma Kawasaki +1 位作者 Ayane Yui Yuta Yamachi 《Open Journal of Composite Materials》 2025年第1期44-57,共14页
The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from o... The use of recycled concrete and oyster shells as partial cement and aggregate replacements is ongoing research to solve this multifaceted problem of concrete waste in the construction industry as well as waste from oyster shell farming. However, there is a lack of evidence on the possibility of producing a fully recycled composite consisting of recycled concrete and oyster shell without the need for new cement and natural aggregates. In this study, recycled concrete powder (RCP) and oyster shell were used to produce a green composite. Separate ground and combined ground (separate ground and co-ground) RCP and oyster shells are used to determine the effects of grinding approaches on the mechanical and chemical properties of the composite. The composite samples were molded via press molding by applying 30 MPa of pressure for 10 minutes. The results revealed that the composite prepared via the combined ground approach presented the highest flexural strength compared to the separate ground and unground samples. The FTIR and XRD characterization results revealed no chemical or phase alterations in the raw materials or the resulting composites before and after grinding. SEM analysis revealed that combined grinding reduced the particles’ size and improved the dispersion of the mixture, thereby increasing the strength. 展开更多
关键词 Oyster Shells GRINDING Recycled concrete Powder Waste Wood Composite
在线阅读 下载PDF
Study on Sulfate Erosion Resistance of Basalt Fiber Concrete after Ultra-Low Temperature Freezing and Thawing
17
作者 Kourachia Said Ali Yang Li Lingfeng Ye 《World Journal of Engineering and Technology》 2025年第1期80-95,共16页
This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to ex... This study investigates the compressive and tensile properties of basalt fiber-reinforced concrete (BFRC) after ultra-low-temperature freeze-thaw cycles. Scanning electron microscope (SEM) analysis was conducted to examine the deterioration mechanisms caused by freeze-thaw cycles and sulfate erosion. The results show that compressive and tensile strengths increase with basalt fiber dosage. The optimal dosage is 0.2%. With longer exposure to sulfate erosion, both strengths decline significantly. Basalt fibers effectively bridge cracks, control expansion, enhance compactness, and improve concrete performance. Ultra-low-temperature freeze-thaw cycles and sulfate erosion cause rapid crack growth. Sulfate erosion produces crystallization products and expansive substances. These fill cracks, create pressure, and damage the internal structure. Freezing and expansion forces further enlarge voids and cracks. This provides space for expansive substances, worsening concrete deterioration and reducing its performance. 展开更多
关键词 Basalt Fiber concrete Ultra-Low Temperature Freeze-Thaw Cycle Compressive Properties Splitting Tensile Properties Strength Deterioration Model
在线阅读 下载PDF
Modeling Drying Shrinkage of Concrete Based on Differences in Fine-Aggregate Properties
18
作者 XUE Cuizhen MIAO Gaixia ZHOU Aoxiang 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1672-1688,共17页
To study the effects of fine-aggregates on the drying-shrinkage properties of concrete,two types of manufactured-sand and one type of natural sand(excluding<75μm particles)were selected for tests,and nine sets of ... To study the effects of fine-aggregates on the drying-shrinkage properties of concrete,two types of manufactured-sand and one type of natural sand(excluding<75μm particles)were selected for tests,and nine sets of concrete drying shrinkage tests were designed with three strength grade(C30,C40,and C50)as variables.By observing the drying-shrinkage deformation of the specimens over 360 days,the effects of fine-aggregate properties on the drying shrinkage properties of concrete of different strength grades were analyzed and a prediction model was developed.Compared with natural sand concrete,the development of drying shrinkage of manufactured-sand concrete exhibits the phenomenon of advancement.The apparent density of the fine-aggregate and the strength grade are the two main factors affecting the limit value of the drying shrinkage of concrete.With a reduction in the water absorption or apparent density of the fine-aggregate or the strength grade of concrete prepared using the same fine-aggregate,the prediction accuracy of the existing models decreases.According to the GL 2000 model,two coefficients-and-were introduced to propose a prediction model for the drying shrinkage of fine-aggregate concrete,which is applicable to different strength grades. 展开更多
关键词 concretE drying shrinkage fine-aggregate MODELING
原文传递
Review of the Mechanical Performance Prediction of Concrete Based on Artificial Neural Networks
19
作者 Yidong Xu Weijie Zhuge +2 位作者 Jialei Wang Xiaopeng Yu Kan Wu 《Structural Durability & Health Monitoring》 2025年第6期1507-1527,共21页
The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.Th... The performance of concrete can be affected by many factors,including the material composition,environmental conditions,and construction methods,and it is challenging to predict the performance evolution accurately.The rise of artificial intelligence provides a way to meet the above challenges.This article elaborates on research overview of artificial neural network(ANN)and its prediction for concrete strength,deformation,and durability.The focus is on the comparative analysis of the prediction accuracy for different types of neural networks.Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the practical engineering applications.To further improve the applicability of ANN in concrete,the model can consider the combination of multiple algorithms and the expansion of data samples.The review can provide new research ideas for development of concrete performance prediction. 展开更多
关键词 concretE performance prediction artificial neural network STRENGTH DEFORMATION DURABILITY
在线阅读 下载PDF
Study on drying shrinkage and creep of manufactured sand concrete in railway prestressed structures
20
作者 Zhen Wang Huajian Li +1 位作者 Zhiqiang Yang Fali Huang 《Railway Sciences》 2025年第6期746-761,共16页
Purpose–Severe scarcity of natural river sand(RS),exacerbated by environmental protection policies and extraction constraints,has significantly impacted aggregate supply for railway concrete.While manufactured sand(M... Purpose–Severe scarcity of natural river sand(RS),exacerbated by environmental protection policies and extraction constraints,has significantly impacted aggregate supply for railway concrete.While manufactured sand(MS)offers a substitute for RS in railway applications,its widespread adoption in high-strength railway prestressed structures is challenged by lack of drying shrinkage and creep research data on concrete.Design/methodology/approach–High-strength manufactured sand concrete(MSC)was prepared using MS with varying lithologies and stone powder contents.Its drying shrinkage and creep behaviors were evaluated in accordance with the Chinese standard GB/T 50082.The deformation mechanism was analyzed by combining nano-scratch testing.Findings–Compared to RS concrete,MSC from all tested lithologies showed higher drying shrinkage but lower creep deformation.The drying shrinkage rose steadily with increased stone powder content,while the creep strain displayed a distinct non-linear trend,decreasing first before rising.To prepare low-deformation MSC,select high-strength MS and limit stone powder content not greater 10%.Nano-scratch tests indicated that harder MS particles suppress microcracking at the interfacial transition zone(ITZ),improving the creep resistance.The predictive models for drying shrinkage and creep were also developed by incorporating coefficients for stone powder and lithology effects.Originality/value–These findings serve as a foundation for the application of MSC in railway prestressed structures,offering both theoretical and practical guidance. 展开更多
关键词 Drying shrinkage CREEP Manufactured sand Railway concrete NANO-SCRATCH
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部