BACKGROUND Compared to standard hospital meals,nutritional intervention using recovery K5(RK5),a concentrated liquid diet,offers a comprehensive immunonutritional profile,suggesting its potential effectiveness in prev...BACKGROUND Compared to standard hospital meals,nutritional intervention using recovery K5(RK5),a concentrated liquid diet,offers a comprehensive immunonutritional profile,suggesting its potential effectiveness in preventing surgical site infections(SSIs)after gastrointestinal surgery.AIM To investigate the usefulness of RK5 in patients undergoing elective colorectal cancer surgery,focusing on postoperative infections and nutritional status.METHODS This single-center,open-label,randomized,parallel-group comparative trial was conducted at Department of Gastrointestinal Surgery,Nippon Medical School Hospital,between February 2023 and August 2024.Forty patients with colorectal cancer were randomly assigned in a 1:1 ratio to either the nutritional intervention or the control group.The intervention group received 800 kcal/day of RK5 administered orally instead of breakfast and dinner(400 kcal per serving)2 days prior to surgery,whereas the control group received only standard meals.Postoperative infection,nutritional status,and bowel habits were assessed.RESULTS No cases of remote infection were observed.SSIs occurred in one of the 17 patients(5.9%)in the intervention group and six of the 18 patients(33.3%)in the control group,with an odds ratio of 0.125(95%confidence interval:0.013-1.181,P=0.0695).Energy intake and percentage of target energy intake were significantly higher in the intervention group.No significant differences were observed betShinji S et al.RK5 in colorectal cancer surgery WJGS https://www.wjgnet.com 2 November 27,2025 Volume 17 Issue 11 ween the two groups regarding nutritional status,bowel movement frequency,or the incidence of diarrhea.CONCLUSION Supplemental nutrition using RK5 may help prevent SSIs in patients undergoing elective colorectal cancer surgery and should be considered as a potential option for perioperative nutritional management.展开更多
Complex concentrated alloys(CCAs)containing the L2_(1)phase are recognized for their exceptional strength and thermal stability,positioning them as strong candidates for transformative applications in aerospace,energy...Complex concentrated alloys(CCAs)containing the L2_(1)phase are recognized for their exceptional strength and thermal stability,positioning them as strong candidates for transformative applications in aerospace,energy,and structural sectors.This investigation delves into the AlFexNiTiV_(40-x)(x=0,10,20,30,35,40;at%)CCAs,aiming to unlock the synergistic potential of BCC and L2_(1)phases.By conducting an in-depth analysis of microstructure,phase behavior,and mechanical properties,the intricate relationships between chemistry,structure,and properties are illuminated within this alloy system.The Al_(15)Fe_(35)Ni_(3)0Ti_(15)V_(5)alloy demonstrates remarkable mechanical properties,achieving a yield strength of 2140.9 MPa and ultimate compressive strength of 2699.7 MPa,primarily through solid solution strengthening and precipitation hardening.Notably,its low lattice mismatches and nanoprecipitate strengthening yield an impressive specific yield strength at 600℃(245.2 MPa(g·cm^(-3))^(-1)).Phase modulation achieves the synergistic optimization of specific strengths at both room and high temperatures in CCAs containing the L2_(1)phase,opening new avenues for designing advanced lightweight and high strength alloys for elevated-temperature applications.展开更多
Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic react...Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic reactions in zinc perchlorate electrolytes,which is caused by the fast corrosive kinetics at room temperature.Herein,a concentrated perchlorate-based electrolyte consisting of 4.0 M Zn(ClO_(4))_(2)and saturated NaClO_(4)solution is developed to achieve dendrite-free and stable AZIBs at room temperature.The ClO_(4)−participates in the primary solvation sheath of Zn^(2+),facilitating the in situ formation of Zn_(5)(OH)_(8)Cl_(2)·H_(2)O-rich solid electrolyte interphase(SEI)to suppress the corrosion effect of ClO_(4)^(−).The Zn anode protected by the SEI achieves stable Zn plating/stripping over 3000 h.Furthermore,the MnO_(2)||Zn full cells manifest a stable specific capacity of 200 mAh·g^(−1)at 28℃and 101 mAh·g^(−1)at−20℃.This work introduces a promising approach for boosting the room-temperature performance of perchlorate-based electrolytes for AZIBs.展开更多
A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of...A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.展开更多
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-c...Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.展开更多
The morphing wing has a significant positive effect on the aerodynamic performance of the aircraft.This paper describes a leading-edge of variable camber wing with concentrated flexibility based on the geared five-bar...The morphing wing has a significant positive effect on the aerodynamic performance of the aircraft.This paper describes a leading-edge of variable camber wing with concentrated flexibility based on the geared five-bar mechanism.The driving points of morphing skin formed by the glass fibre composite sheet were optimized to make the skin deformation smooth.A geared fivebar kinematic mechanism rigidly connected to the skin was proposed to drive the leading-edge deformation.Besides,a new kind of concentrated flexure hinge was designed using the pseudorigid-body method and applied to the joint between the rigid mechanism and the skin.Finally,the leading-edge prototypes with traditional hinges and flexure hinges were produced,respectively.The feasibility of the concentrated flexibility leading-edge was verified through the comparative experiments of ground deformation.Simultaneously,aerodynamic analysis was carried out to compare the concentrated flexure leading-edge wing with the original airfoil.展开更多
The corrosion behavior of 2205 duplex stainless steel was investigated in hot concentrated seawater with different dissolved oxygen(DO) concentration by electrochemical measurement techniques and surface analysis meth...The corrosion behavior of 2205 duplex stainless steel was investigated in hot concentrated seawater with different dissolved oxygen(DO) concentration by electrochemical measurement techniques and surface analysis methods. DO obviously enhances the cathodic reaction process, the formation of passive film and polarization resistance. With increasing the DO concentration from 0.34 to 3.06 mg L^(-1), the relative contents of Fe_(2)O_(3) and Cr_(2)O_(3) and the Cr-enrichment gradually enlarge in the passive film. The higher DO concentrations result in lower defect densities and thicker of space charge layers in the passive films,whichmayeffectively inhibit the intrusion of aggressive chloride ions. The increment inDOconcentration clearly increases the pitting potential, but decreases the repassivation potential. It may weaken both the occurrence and repassviation tendencies of stable pitting corrosion.展开更多
Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lith...Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries.展开更多
The mechanical properties of complex concentrated alloys(CCAs)depend on their formed phases and corresponding microstructures.The data-driven prediction of the phase formation and associated mechanical properties is e...The mechanical properties of complex concentrated alloys(CCAs)depend on their formed phases and corresponding microstructures.The data-driven prediction of the phase formation and associated mechanical properties is essential to discovering novel CCAs.The present work collects 557 samples of various chemical compositions,comprising 61 amorphous,167 single-phase crystalline,and 329 multiphases crystalline CCAs.Three classification models are developed with high accuracies to category and understand the formed phases of CCAs.Also,two regression models are constructed to predict the hardness and ultimate tensile strength of CCAs,and the correlation coefficient of the random forest regression model is greater than 0.9 for both of two targeted properties.Furthermore,the Shapley additive explanation(SHAP)values are calculated,and accordingly four most important features are identified.A significant finding in the SHAP values is that there exists a critical value in each of the top four features,which provides an easy and fast assessment in the design of improved mechanical properties of CCAs.The present work demonstrates the great potential of machine learning in the design of advanced CCAs.展开更多
BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic...BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic refractory wounds.The current therapeutic regimens often lead to prolonged hospital stay and higher healthcare costs.Concentrated growth factor(CGF)is a novel blood extract that contains various growth factors,platelets,and fibrins to promote wound healing process.However,there has been little research reported on the treatment of lower extremity wounds with CGF.CASE SUMMARY A 37-year-old man,without any past medical history,presented an ulcerated chronic wound on his right lower leg.The skin defect exhibited clear boundaries,with a size of 2.0 cm×3.5 cm.The depth of wound was up to the layer of deep fascia.Staphylococcus aureus was detected by bacterial culture.The final diagnosis was right lower extremity ulcers with infection.Cefathiamidine,silver sulfadiazine,and mupirocin cream were applied to control the infection.CGF gel was prepared from the patient’s blood sample,and was used to cover the wound after thorough debridement.The skin wound was successfully healed after three times of CGF treatment.CONCLUSION CGF displays an excellent wound healing promoting effect in patients with lowerextremity chronic refractory wounds.展开更多
Lithium metal batteries(LMBs)are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at an...Lithium metal batteries(LMBs)are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at anodes simultaneously,leading to severe interfacial reactions.Herein,a highly concentrated electrolyte(HCE)region trapped in porous carbon coating layer is adopted to form a stable and highly conductive solid electrolyte interphase(SEI)on Li metal surface.The protected Li metal anode can potentially match the high-voltage cathode in ester electrolytes.Synergistically,this ingenious design promises high-voltage-resistant interfaces at cathodes and stable SEI with abundance of inorganic components at anodes simultaneously in high-voltage LMBs.The feasibility of this interface-regulation strategy is demonstrated in Li|LiFePO_(4) batteries,realizing a lifespan twice as long as the routine cells,with a huge capacity retention enhancement from 46.4%to 88.7%after 100 cycles.This contribution proof-ofconcepts the emerging principles on the formation and regulation of stable electrode/electrolyte interfaces in the cathode and anode simultaneously towards the next-generation high-energy-density batteries.展开更多
AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide...AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide the level and quality of evidence substantiating the use of cB MA in the clinical setting.METHODS We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cB MA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cB MA preparation, cB MA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text.RESULTS A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36(86%) studies reported the method of centrifugation and preparation of cB MA with 15(42%) studies reporting either a cell concentration or an increase from baseline. Variation of c BMA application was seen amongst the studies evaluated. Twenty-one of 36(58%) were level of evidence Ⅳ, 12/36(33%) were level of evidence Ⅲ, and 3/36(8%) were level of evidence Ⅱ. Studies evaluated full thickness chondral lesions(7 studies), osteochondral lesions(10 studies), osteoarthritis(5 studies), nonunion or fracture(9 studies), or tendon injuries(5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cB MA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cB MA. Enhanced healingrates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cB MA as an adjunctive treatment in tendon repair. CONCLUSION The current literature demonstrates the potential benefits of utilizing c BMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.展开更多
By means of energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) analysis, the phase structure characteristics of high titanium slag were analyzed. Through the single factor and the orthog...By means of energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) analysis, the phase structure characteristics of high titanium slag were analyzed. Through the single factor and the orthogonal experiment methods, the effects of material particle size, mass ratio of acid to ore, roasting temperature, and roasting time on the acidolysis ratio of TiO<sub>2</sub> during the process of roasting high titanium slag with concentrated sulfuric acid were systematically investigated. The results show that the sequence of each factor affecting the acidolysis ratio of TiO<sub>2</sub> is: mass ratio of acid to ore, roasting time, and roasting temperature. The optimum technological conditions are obtained as mass ratio of acid to ore of 2.1, roasting temperature of 310°C, roasting time of 75min, and material particle size of 45–53μm. The acidolysis ratio of TiO<sub>2</sub> is over 96% under the optimum conditions. The roasting process is proved to be significant in the exploitation and utilization of high titanium slag. The advantages of the proposed roasting process are of high efficiency, low power consumption, and minimum pollution.展开更多
Combining high strength and good ductility is an urgent requirement for traditional structural materials,but yet a challenge.Newly emerging ductile Ti_(3)Zr_(1.5)VNbAl_(x)(x=0,0.25,0.5,0.75) refractory complex concent...Combining high strength and good ductility is an urgent requirement for traditional structural materials,but yet a challenge.Newly emerging ductile Ti_(3)Zr_(1.5)VNbAl_(x)(x=0,0.25,0.5,0.75) refractory complex concentrated alloys(RCCAs) with high specific strength were designed and synthesized via vacuum arc-melting.Alloying effects of Al on microstructure and mechanical properties were systematically investigated.It was found that the phase composition in this alloy system changes from the single disordered body-centered cubic(BCC) phase to a nano-scale mixture of co-continuous disordered BCC and ordered B2 phases with the increase of Al concentration.This structure transition results in a remarkable increase in the yield strength of the RCCAs,i.e.,from 790 to 1118 MPa,leading to a superior specific yield strength of 199.4 MPa cm^(3)g^(-1)for the Al0.75 alloy,meanwhile,the tension plasticity maintained at~10%.TEM observation demonstrates that cell-forming structure and HDDWs induced by wave slip play a crucial role of considerable plasticity in Al0.25 alloy,whereas in Al0.5 alloy,microbands induced by planar slip dominant deformation behavior.The current work is important not only for providing novel high strength and tough structural materials with low density,but also sheds light on designing highperformance lightweight alloys with tunable microstructure.展开更多
The electrochemical behavior and passivation properties of 2507 super duplex stainless steel(SDSS)in the hot concentrated seawater with different concentrations at different temperatures are characterized by electroch...The electrochemical behavior and passivation properties of 2507 super duplex stainless steel(SDSS)in the hot concentrated seawater with different concentrations at different temperatures are characterized by electrochemical methods and X-ray photoelectron spectroscopy.The passive film formed on 2507 SDSS belongs to n-type semiconductor and mainly composed of hydroxides and oxides of Fe and Cr under all circumstances.The protectiveness of the passive film decreases with the increase in temperature mainly because of the increase in defect density in the passive film.The corrosion resistance of 2507 decreases with the increase in seawater concentration,and the critical pitting temperature also decreases.展开更多
The Green function on two-phase saturated medium by concentrated force has a broad and important use In seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to th...The Green function on two-phase saturated medium by concentrated force has a broad and important use In seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to the Green function on two-phase saturated medium by concentrated force in three-dimentional displacement field obtained by Ding Bo-yang et al., it gives out the Green function in two-dimensional displacement field by infinite integral method along x(3)-direction derived by De Hoop and Manolis. The method adopted in the thesis is simpler. The result will be simplified to the boundary element method of dynamic problem.展开更多
This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear govern...This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge-Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10^-5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.展开更多
The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The flui...The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.展开更多
An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the de...An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.展开更多
文摘BACKGROUND Compared to standard hospital meals,nutritional intervention using recovery K5(RK5),a concentrated liquid diet,offers a comprehensive immunonutritional profile,suggesting its potential effectiveness in preventing surgical site infections(SSIs)after gastrointestinal surgery.AIM To investigate the usefulness of RK5 in patients undergoing elective colorectal cancer surgery,focusing on postoperative infections and nutritional status.METHODS This single-center,open-label,randomized,parallel-group comparative trial was conducted at Department of Gastrointestinal Surgery,Nippon Medical School Hospital,between February 2023 and August 2024.Forty patients with colorectal cancer were randomly assigned in a 1:1 ratio to either the nutritional intervention or the control group.The intervention group received 800 kcal/day of RK5 administered orally instead of breakfast and dinner(400 kcal per serving)2 days prior to surgery,whereas the control group received only standard meals.Postoperative infection,nutritional status,and bowel habits were assessed.RESULTS No cases of remote infection were observed.SSIs occurred in one of the 17 patients(5.9%)in the intervention group and six of the 18 patients(33.3%)in the control group,with an odds ratio of 0.125(95%confidence interval:0.013-1.181,P=0.0695).Energy intake and percentage of target energy intake were significantly higher in the intervention group.No significant differences were observed betShinji S et al.RK5 in colorectal cancer surgery WJGS https://www.wjgnet.com 2 November 27,2025 Volume 17 Issue 11 ween the two groups regarding nutritional status,bowel movement frequency,or the incidence of diarrhea.CONCLUSION Supplemental nutrition using RK5 may help prevent SSIs in patients undergoing elective colorectal cancer surgery and should be considered as a potential option for perioperative nutritional management.
基金supported by the National Natural Science Foundation of China(Nos.52301043 and 51871077)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012626),Shenzhen Knowledge Innovation Plan-Fundamental Research(Discipline Distribution)(No.JCYJ20180507184623297)+1 种基金Shenzhen Science and Technology Plan-Technology Innovation(No.KQJSCX20180328165656256)the Startup Foundation from Shenzhen(Nos.NA25501001,and NA11409005).
文摘Complex concentrated alloys(CCAs)containing the L2_(1)phase are recognized for their exceptional strength and thermal stability,positioning them as strong candidates for transformative applications in aerospace,energy,and structural sectors.This investigation delves into the AlFexNiTiV_(40-x)(x=0,10,20,30,35,40;at%)CCAs,aiming to unlock the synergistic potential of BCC and L2_(1)phases.By conducting an in-depth analysis of microstructure,phase behavior,and mechanical properties,the intricate relationships between chemistry,structure,and properties are illuminated within this alloy system.The Al_(15)Fe_(35)Ni_(3)0Ti_(15)V_(5)alloy demonstrates remarkable mechanical properties,achieving a yield strength of 2140.9 MPa and ultimate compressive strength of 2699.7 MPa,primarily through solid solution strengthening and precipitation hardening.Notably,its low lattice mismatches and nanoprecipitate strengthening yield an impressive specific yield strength at 600℃(245.2 MPa(g·cm^(-3))^(-1)).Phase modulation achieves the synergistic optimization of specific strengths at both room and high temperatures in CCAs containing the L2_(1)phase,opening new avenues for designing advanced lightweight and high strength alloys for elevated-temperature applications.
基金supported by Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.2021JJLH0069)the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJ-JYRC-2023-55)Hainan Provincial Natural Science Foundation of China(No.522CXTD516).
文摘Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic reactions in zinc perchlorate electrolytes,which is caused by the fast corrosive kinetics at room temperature.Herein,a concentrated perchlorate-based electrolyte consisting of 4.0 M Zn(ClO_(4))_(2)and saturated NaClO_(4)solution is developed to achieve dendrite-free and stable AZIBs at room temperature.The ClO_(4)−participates in the primary solvation sheath of Zn^(2+),facilitating the in situ formation of Zn_(5)(OH)_(8)Cl_(2)·H_(2)O-rich solid electrolyte interphase(SEI)to suppress the corrosion effect of ClO_(4)^(−).The Zn anode protected by the SEI achieves stable Zn plating/stripping over 3000 h.Furthermore,the MnO_(2)||Zn full cells manifest a stable specific capacity of 200 mAh·g^(−1)at 28℃and 101 mAh·g^(−1)at−20℃.This work introduces a promising approach for boosting the room-temperature performance of perchlorate-based electrolytes for AZIBs.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
文摘Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.
基金supported by National Natural Science Foundation of China(No.50975230)Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JM500)National Natural Science Foundation of China(No.51375383)。
文摘The morphing wing has a significant positive effect on the aerodynamic performance of the aircraft.This paper describes a leading-edge of variable camber wing with concentrated flexibility based on the geared five-bar mechanism.The driving points of morphing skin formed by the glass fibre composite sheet were optimized to make the skin deformation smooth.A geared fivebar kinematic mechanism rigidly connected to the skin was proposed to drive the leading-edge deformation.Besides,a new kind of concentrated flexure hinge was designed using the pseudorigid-body method and applied to the joint between the rigid mechanism and the skin.Finally,the leading-edge prototypes with traditional hinges and flexure hinges were produced,respectively.The feasibility of the concentrated flexibility leading-edge was verified through the comparative experiments of ground deformation.Simultaneously,aerodynamic analysis was carried out to compare the concentrated flexure leading-edge wing with the original airfoil.
基金supported financially by the National Natural Science Foundation of China (Nos. U1960103 and 51571139)。
文摘The corrosion behavior of 2205 duplex stainless steel was investigated in hot concentrated seawater with different dissolved oxygen(DO) concentration by electrochemical measurement techniques and surface analysis methods. DO obviously enhances the cathodic reaction process, the formation of passive film and polarization resistance. With increasing the DO concentration from 0.34 to 3.06 mg L^(-1), the relative contents of Fe_(2)O_(3) and Cr_(2)O_(3) and the Cr-enrichment gradually enlarge in the passive film. The higher DO concentrations result in lower defect densities and thicker of space charge layers in the passive films,whichmayeffectively inhibit the intrusion of aggressive chloride ions. The increment inDOconcentration clearly increases the pitting potential, but decreases the repassivation potential. It may weaken both the occurrence and repassviation tendencies of stable pitting corrosion.
基金financially supported by the National Key R&D Program of China (Grant No. 2017YFE0127600)the National Natural Science Foundation of China (Nos. 51703236 and U1706229)+1 种基金the National Science Fund for Distinguished Young Scholars (No. 51625204)Key Scientific and Technological Innovation Project of Shandong (No. 2017CXZC0505)。
文摘Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries.
基金supported by the National Key R&D Program of China(No.2018YFB0704404)the Hong Kong Polytechnic University(internal grant nos.1-ZE8R and G-YBDH)the 111 Project of the State Administration of Foreign Experts Affairs and the Ministry of Education,China(grant no.D16002)。
文摘The mechanical properties of complex concentrated alloys(CCAs)depend on their formed phases and corresponding microstructures.The data-driven prediction of the phase formation and associated mechanical properties is essential to discovering novel CCAs.The present work collects 557 samples of various chemical compositions,comprising 61 amorphous,167 single-phase crystalline,and 329 multiphases crystalline CCAs.Three classification models are developed with high accuracies to category and understand the formed phases of CCAs.Also,two regression models are constructed to predict the hardness and ultimate tensile strength of CCAs,and the correlation coefficient of the random forest regression model is greater than 0.9 for both of two targeted properties.Furthermore,the Shapley additive explanation(SHAP)values are calculated,and accordingly four most important features are identified.A significant finding in the SHAP values is that there exists a critical value in each of the top four features,which provides an easy and fast assessment in the design of improved mechanical properties of CCAs.The present work demonstrates the great potential of machine learning in the design of advanced CCAs.
基金Supported by Shenzhen Longhua District Science and Innovation Bureau for Key Laboratory Construction,No.20160919A0410022Shenzhen Longhua District Science and Innovation Bureau Fund for Medical Institutions,No.2020038 and No.2017136。
文摘BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic refractory wounds.The current therapeutic regimens often lead to prolonged hospital stay and higher healthcare costs.Concentrated growth factor(CGF)is a novel blood extract that contains various growth factors,platelets,and fibrins to promote wound healing process.However,there has been little research reported on the treatment of lower extremity wounds with CGF.CASE SUMMARY A 37-year-old man,without any past medical history,presented an ulcerated chronic wound on his right lower leg.The skin defect exhibited clear boundaries,with a size of 2.0 cm×3.5 cm.The depth of wound was up to the layer of deep fascia.Staphylococcus aureus was detected by bacterial culture.The final diagnosis was right lower extremity ulcers with infection.Cefathiamidine,silver sulfadiazine,and mupirocin cream were applied to control the infection.CGF gel was prepared from the patient’s blood sample,and was used to cover the wound after thorough debridement.The skin wound was successfully healed after three times of CGF treatment.CONCLUSION CGF displays an excellent wound healing promoting effect in patients with lowerextremity chronic refractory wounds.
基金supported by Beijing Natural Science Foundation(JQ20004)National Natural Science Foundation of China(21805161,21808121,and U1932220)+1 种基金China Post-Doctoral Science Foundation(2020M670155 and 2020T130054)Scientific and Technological Key Project of Shanxi Province(20191102003)。
文摘Lithium metal batteries(LMBs)are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at anodes simultaneously,leading to severe interfacial reactions.Herein,a highly concentrated electrolyte(HCE)region trapped in porous carbon coating layer is adopted to form a stable and highly conductive solid electrolyte interphase(SEI)on Li metal surface.The protected Li metal anode can potentially match the high-voltage cathode in ester electrolytes.Synergistically,this ingenious design promises high-voltage-resistant interfaces at cathodes and stable SEI with abundance of inorganic components at anodes simultaneously in high-voltage LMBs.The feasibility of this interface-regulation strategy is demonstrated in Li|LiFePO_(4) batteries,realizing a lifespan twice as long as the routine cells,with a huge capacity retention enhancement from 46.4%to 88.7%after 100 cycles.This contribution proof-ofconcepts the emerging principles on the formation and regulation of stable electrode/electrolyte interfaces in the cathode and anode simultaneously towards the next-generation high-energy-density batteries.
文摘AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide the level and quality of evidence substantiating the use of cB MA in the clinical setting.METHODS We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cB MA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cB MA preparation, cB MA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text.RESULTS A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36(86%) studies reported the method of centrifugation and preparation of cB MA with 15(42%) studies reporting either a cell concentration or an increase from baseline. Variation of c BMA application was seen amongst the studies evaluated. Twenty-one of 36(58%) were level of evidence Ⅳ, 12/36(33%) were level of evidence Ⅲ, and 3/36(8%) were level of evidence Ⅱ. Studies evaluated full thickness chondral lesions(7 studies), osteochondral lesions(10 studies), osteoarthritis(5 studies), nonunion or fracture(9 studies), or tendon injuries(5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cB MA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cB MA. Enhanced healingrates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cB MA as an adjunctive treatment in tendon repair. CONCLUSION The current literature demonstrates the potential benefits of utilizing c BMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.
基金financially supported by the National Natural Science Foundation of China(Nos.61372195 and61304069)the National Basic Research Program of China(No.2007CB613603)
文摘By means of energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) analysis, the phase structure characteristics of high titanium slag were analyzed. Through the single factor and the orthogonal experiment methods, the effects of material particle size, mass ratio of acid to ore, roasting temperature, and roasting time on the acidolysis ratio of TiO<sub>2</sub> during the process of roasting high titanium slag with concentrated sulfuric acid were systematically investigated. The results show that the sequence of each factor affecting the acidolysis ratio of TiO<sub>2</sub> is: mass ratio of acid to ore, roasting time, and roasting temperature. The optimum technological conditions are obtained as mass ratio of acid to ore of 2.1, roasting temperature of 310°C, roasting time of 75min, and material particle size of 45–53μm. The acidolysis ratio of TiO<sub>2</sub> is over 96% under the optimum conditions. The roasting process is proved to be significant in the exploitation and utilization of high titanium slag. The advantages of the proposed roasting process are of high efficiency, low power consumption, and minimum pollution.
基金financially supported by the National Key Research and Development Program (No.2018YFB0703402)the National Natural Science Foundation of China (Grant No.52074257)Chinese Academy of Sciences (No.ZDBS-LY-JSC023)。
文摘Combining high strength and good ductility is an urgent requirement for traditional structural materials,but yet a challenge.Newly emerging ductile Ti_(3)Zr_(1.5)VNbAl_(x)(x=0,0.25,0.5,0.75) refractory complex concentrated alloys(RCCAs) with high specific strength were designed and synthesized via vacuum arc-melting.Alloying effects of Al on microstructure and mechanical properties were systematically investigated.It was found that the phase composition in this alloy system changes from the single disordered body-centered cubic(BCC) phase to a nano-scale mixture of co-continuous disordered BCC and ordered B2 phases with the increase of Al concentration.This structure transition results in a remarkable increase in the yield strength of the RCCAs,i.e.,from 790 to 1118 MPa,leading to a superior specific yield strength of 199.4 MPa cm^(3)g^(-1)for the Al0.75 alloy,meanwhile,the tension plasticity maintained at~10%.TEM observation demonstrates that cell-forming structure and HDDWs induced by wave slip play a crucial role of considerable plasticity in Al0.25 alloy,whereas in Al0.5 alloy,microbands induced by planar slip dominant deformation behavior.The current work is important not only for providing novel high strength and tough structural materials with low density,but also sheds light on designing highperformance lightweight alloys with tunable microstructure.
基金financially supported by the National Natural Science Foundation of China(No.51701102)the Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province(No.DC2000000891)the Shandong Provincial Key R&D Plan(Nos.2019GHY112050 and 2019GGX104072)。
文摘The electrochemical behavior and passivation properties of 2507 super duplex stainless steel(SDSS)in the hot concentrated seawater with different concentrations at different temperatures are characterized by electrochemical methods and X-ray photoelectron spectroscopy.The passive film formed on 2507 SDSS belongs to n-type semiconductor and mainly composed of hydroxides and oxides of Fe and Cr under all circumstances.The protectiveness of the passive film decreases with the increase in temperature mainly because of the increase in defect density in the passive film.The corrosion resistance of 2507 decreases with the increase in seawater concentration,and the critical pitting temperature also decreases.
文摘The Green function on two-phase saturated medium by concentrated force has a broad and important use In seismology, seismic engineering, soil mechanics, geophysics, dynamic foundation theory and so on. According to the Green function on two-phase saturated medium by concentrated force in three-dimentional displacement field obtained by Ding Bo-yang et al., it gives out the Green function in two-dimensional displacement field by infinite integral method along x(3)-direction derived by De Hoop and Manolis. The method adopted in the thesis is simpler. The result will be simplified to the boundary element method of dynamic problem.
文摘This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge-Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10^-5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.
基金the National Natural Science Foundation of China(10602032)the Shanghai Rising-Star Program(07QA14022)the Shanghai Leading Academic Discipline Project(Y0103)
文摘The surface waves generated by unsteady concentrated disturbances in an initially quiescent fluid of infinite depth with an inertial surface are analytically investigated for two- and three-dimensional cases. The fluid is assumed to be inviscid, incompressible and homogenous. The inertial surface represents the effect of a thin uniform distribution of non-interacting floating matter. Four types of unsteady concentrated disturbances and two kinds of initial values are considered, namely an instantaneous/oscillating mass source immersed in the fluid, an instantaneous/oscillating impulse on the surface, an initial impulse on the surface of the fluid, and an initial displacement of the surface. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the surface elevation are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motion for large time with a fixed distance- to-time ratio are derived by using the method of stationary phase. The effect of the presence of an inertial surface on the wave motion is analyzed. It is found that the wavelengths of the transient dispersive waves increase while those of the steady-state progressive waves decrease. All the wave amplitudes decrease in comparison with those of conventional free-surface waves. The explicit expressions for the freesurface gravity waves can readily be recovered by the present results as the inertial surface disappears.
文摘An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.