期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
A Two-Layer UAV Cooperative Computing Offloading Strategy Based on Deep Reinforcement Learning
1
作者 Zhang Jianfei Wang Zhen +1 位作者 Hu Yun Chang Zheng 《China Communications》 2025年第10期251-268,共18页
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi... In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy. 展开更多
关键词 cooperative computational offloading deep reinforcement learning mobile edge computing prioritized experience replay two-layer unmanned aerial vehicles
在线阅读 下载PDF
Multi-Objective Optimization for NOMA-Based Mobile Edge Computing Offloading by Maximizing System Utility 被引量:2
2
作者 Hong Qin Haitao Du +2 位作者 Huahua Wang Li Su Yunfeng Peng 《China Communications》 SCIE CSCD 2023年第12期156-165,共10页
Mobile Edge Computing(MEC)is a technology for the fifth-generation(5G)wireless communications to enable User Equipment(UE)to offload tasks to servers deployed at the edge of network.However,taking both delay and energ... Mobile Edge Computing(MEC)is a technology for the fifth-generation(5G)wireless communications to enable User Equipment(UE)to offload tasks to servers deployed at the edge of network.However,taking both delay and energy consumption into consideration in the 5G MEC system is usually complex and contradictory.Non-orthogonal multiple access(NOMA)enable more UEs to offload their computing tasks to MEC servers using the same spectrum resources to enhance the spectrum efficiency for 5G,which makes the problem even more complex in the NOMA-MEC system.In this work,a system utility maximization model is present to NOMA-MEC system,and two optimization algorithms based on Newton method and greedy algorithm respectively are proposed to jointly optimize the computing resource allocation,SIC order,transmission time slot allocation,which can easily achieve a better trade-off between the delay and energy consumption.The simulation results prove that the proposed method is effective for NOMA-MEC systems. 展开更多
关键词 computation offloading mobile edge computing non-orthogonal multiple access resource allocation
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
3
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
Joint offloading decision and resource allocation in vehicular edge computing networks
4
作者 Shumo Wang Xiaoqin Song +3 位作者 Han Xu Tiecheng Song Guowei Zhang Yang Yang 《Digital Communications and Networks》 2025年第1期71-82,共12页
With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications a... With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay. 展开更多
关键词 Computation offloading Resource allocation Vehicular edge computing Potential game Multi-agent deep deterministic policy gradient
在线阅读 下载PDF
DDPG-Based Intelligent Computation Offloading and Resource Allocation for LEO Satellite Edge Computing Network
5
作者 Jia Min Wu Jian +2 位作者 Zhang Liang Wang Xinyu Guo Qing 《China Communications》 2025年第3期1-15,共15页
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t... Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms. 展开更多
关键词 computation offloading deep deterministic policy gradient low earth orbit satellite mobile edge computing resource allocation
在线阅读 下载PDF
AMulti-Objective Joint Task Offloading Scheme for Vehicular Edge Computing
6
作者 Yiwei Zhang Xin Cui Qinghui Zhao 《Computers, Materials & Continua》 2025年第8期2355-2373,共19页
The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial veh... The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks. 展开更多
关键词 Vehicular edge computing cooperative game theory multi-objective optimization computation offloading
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
7
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
8
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
DRL-Based Cross-Regional Computation Offloading Algorithm
9
作者 Lincong Zhang Yuqing Liu +2 位作者 Kefeng Wei Weinan Zhao Bo Qian 《Computers, Materials & Continua》 2026年第1期901-918,共18页
In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network e... In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads. 展开更多
关键词 Edge computing computational task offloading deep reinforcement learning D3QN device-to-device communication system latency optimization
在线阅读 下载PDF
Review on Offloading of Vehicle Edge Computing 被引量:3
10
作者 Mingwei Wang Hualing Yi +2 位作者 Feng Jiang Ling Lin and Min Gao 《Journal of Artificial Intelligence and Technology》 2022年第4期132-143,共12页
Vehicle Edge Computing(VEC)is a new technology that can extend computing and storage functions to the edge of the Internet of Things systems.For limited computing power and delay-sensitive mobile applications on the I... Vehicle Edge Computing(VEC)is a new technology that can extend computing and storage functions to the edge of the Internet of Things systems.For limited computing power and delay-sensitive mobile applications on the Internet of Vehicles(IoV),it is important to offload computing tasks to the end of the VEC network.Still,high mobility data security and privacy resource management and the randomness of IoV brought about new problems to the offloading of VEC.To this end,this study focuses on the offloading of computing tasks in VEC.We survey principal offloading schemes and methods in the VEC field and classify the current offloading of computing tasks into different categories.We also discuss the prospect of VEC.This survey could give a reference for researchers to find and understand the essential characteristics of VEC,which helps choose the optimal solutions for the offloading of computing tasks in VEC. 展开更多
关键词 computing offloading internet of vehicle vehicle edge computing
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
11
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network 被引量:20
12
作者 Ziying Wu Danfeng Yan 《China Communications》 SCIE CSCD 2021年第11期26-41,共16页
Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers... Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies. 展开更多
关键词 multi-access edge computing computation offloading 5G vehicle-aware deep reinforcement learning deep q-network
在线阅读 下载PDF
Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing 被引量:32
13
作者 Liang Huang Xu Feng +2 位作者 Cheng Zhang Liping Qian Yuan Wu 《Digital Communications and Networks》 SCIE 2019年第1期10-17,共8页
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload comput... The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance。 展开更多
关键词 Mobile edge computing Joint computation offloading and resource allocation Deep-Q network
在线阅读 下载PDF
A review of optimization methods for computation offloading in edge computing networks 被引量:9
14
作者 Kuanishbay Sadatdiynov Laizhong Cui +3 位作者 Lei Zhang Joshua Zhexue Huang Salman Salloum Mohammad Sultan Mahmud 《Digital Communications and Networks》 SCIE CSCD 2023年第2期450-461,共12页
Handling the massive amount of data generated by Smart Mobile Devices(SMDs)is a challenging computational problem.Edge Computing is an emerging computation paradigm that is employed to conquer this problem.It can brin... Handling the massive amount of data generated by Smart Mobile Devices(SMDs)is a challenging computational problem.Edge Computing is an emerging computation paradigm that is employed to conquer this problem.It can bring computation power closer to the end devices to reduce their computation latency and energy consumption.Therefore,this paradigm increases the computational ability of SMDs by collaboration with edge servers.This is achieved by computation offloading from the mobile devices to the edge nodes or servers.However,not all applications benefit from computation offloading,which is only suitable for certain types of tasks.Task properties,SMD capability,wireless channel state,and other factors must be counted when making computation offloading decisions.Hence,optimization methods are important tools in scheduling computation offloading tasks in Edge Computing networks.In this paper,we review six types of optimization methods-they are Lyapunov optimization,convex optimization,heuristic techniques,game theory,machine learning,and others.For each type,we focus on the objective functions,application areas,types of offloading methods,evaluation methods,as well as the time complexity of the proposed algorithms.We discuss a few research problems that are still open.Our purpose for this review is to provide a concise summary that can help new researchers get started with their computation offloading researches for Edge Computing networks. 展开更多
关键词 Edge computing Computation offloading Latency and energy consumption minimization
在线阅读 下载PDF
Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing 被引量:6
15
作者 Yifei Wei Zhaoying Wang +1 位作者 Da Guo FRichard Yu 《Computers, Materials & Continua》 SCIE EI 2019年第4期89-104,共16页
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia re... To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users. 展开更多
关键词 Mobile edge computing computation offloading resource allocation deep reinforcement learning
在线阅读 下载PDF
Adaptive delay-energy balanced partial offloading strategy in Mobile Edge Computing networks 被引量:2
16
作者 Shumei Liu Yao Yu +3 位作者 Lei Guo Phee Lep Yeoh Branka Vucetic Yonghui Li 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1310-1318,共9页
Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased re... Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes. 展开更多
关键词 Mobile edge computing(MEC) DELAY Energy consumption Dynamic balance Partial computation offloading
在线阅读 下载PDF
UAV-assisted cooperative offloading energy efficiency system for mobile edge computing 被引量:2
17
作者 Xue-Yong Yu Wen-Jin Niu +1 位作者 Ye Zhu Hong-Bo Zhu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期16-24,共9页
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat... Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes. 展开更多
关键词 Computation offloading Internet of things(IoT) Mobile edge computing(MEC) Block coordinate descent(BCD)
在线阅读 下载PDF
Stochastic Learning for Opportunistic Peer-to-Peer Computation Offloading in IoT Edge Computing 被引量:1
18
作者 Siqi Mu Yanfei Shen 《China Communications》 SCIE CSCD 2022年第7期239-256,共18页
Peer-to-peer computation offloading has been a promising approach that enables resourcelimited Internet of Things(IoT)devices to offload their computation-intensive tasks to idle peer devices in proximity.Different fr... Peer-to-peer computation offloading has been a promising approach that enables resourcelimited Internet of Things(IoT)devices to offload their computation-intensive tasks to idle peer devices in proximity.Different from dedicated servers,the spare computation resources offered by peer devices are random and intermittent,which affects the offloading performance.The mutual interference caused by multiple simultaneous offloading requestors that share the same wireless channel further complicates the offloading decisions.In this work,we investigate the opportunistic peer-to-peer task offloading problem by jointly considering the stochastic task arrivals,dynamic interuser interference,and opportunistic availability of peer devices.Each requestor makes decisions on both local computation frequency and offloading transmission power to minimize its own expected long-term cost on tasks completion,which takes into consideration its energy consumption,task delay,and task loss due to buffer overflow.The dynamic decision process among multiple requestors is formulated as a stochastic game.By constructing the post-decision states,a decentralized online offloading algorithm is proposed,where each requestor as an independent learning agent learns to approach the optimal strategies with its local observations.Simulation results under different system parameter configurations demonstrate the proposed online algorithm achieves a better performance compared with some existing algorithms,especially in the scenarios with large task arrival probability or small helper availability probability. 展开更多
关键词 Internet of Things(IoT) edge computing OPPORTUNISTIC PEER-TO-PEER computation offloading stochastic game online learning
在线阅读 下载PDF
Efficient Computation Offloading in Mobile Cloud Computing for Video Streaming Over 5G 被引量:1
19
作者 Bokyun Jo MdJalil Piran +1 位作者 Daeho Lee Doug Young Suh 《Computers, Materials & Continua》 SCIE EI 2019年第8期439-463,共25页
In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolu... In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolution video to high-resolution video while minimizing computation at the mobile client and additional communication costs.To do so,we propose an energy-efficient computation offloading framework for video streaming services in a MCC over the fifth generation(5G)cellular networks.In the proposed framework,the mobile client offloads the computational burden for the video enhancement to the cloud,which renders the side information needed to enhance video without requiring much computation by the client.The cloud detects edges from the upsampled ultra-high-resolution video(UHD)and then compresses and transmits them as side information with the original low-resolution video(e.g.,full HD).Finally,the mobile client decodes the received content and integrates the SI and original content,which produces a high-quality video.In our extensive simulation experiments,we observed that the amount of computation needed to construct a UHD video in the client is 50%-60% lower than that required to decode UHD video compressed by legacy video encoding algorithms.Moreover,the bandwidth required to transmit a full HD video and its side information is around 70% lower than that required for a normal UHD video.The subjective quality of the enhanced UHD is similar to that of the original UHD video even though the client pays lower communication costs with reduced computing power. 展开更多
关键词 5G video streaming CLOUD computation offloading energy efficiency upsampling MOS
在线阅读 下载PDF
Adaptive Application Offloading Decision and Transmission Scheduling for Mobile Cloud Computing 被引量:6
20
作者 Junyi Wang Jie Peng +2 位作者 Yanheng Wei Didi Liu Jielin Fu 《China Communications》 SCIE CSCD 2017年第3期169-181,共13页
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off... Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations. 展开更多
关键词 mobile cloud computing application offloading decision transmission scheduling scheme Lyapunov optimization
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部