In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep compu...In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep computing unit)heterogeneous computing platform.Multiple hybrid parallel schemes are assessed using a range of model systems,including those with up to 1200 atoms and 10000 basis func-tions.The findings of our research reveal that,during Hartree-Fock(HF)calculations,a single DCU ex-hibits 33.6 speedups over 32 C86 CPU cores.Compared with the efficiency of Wuhan Electronic Structure Package on Intel X86 and NVIDIA A100 computing platform,the Hygon platform exhibits good cost-effective-ness,showing great potential in quantum chemistry calculation and other high-performance scientific computations.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
Graph computing has become pervasive in many applications due to its capacity to represent complex relationships among different objects in the big data era.However,general-purpose architectures are computationally in...Graph computing has become pervasive in many applications due to its capacity to represent complex relationships among different objects in the big data era.However,general-purpose architectures are computationally inefficient for graph algorithms,and dedicated architectures can provide high efficiency,but lack flexibility.To address these challenges,this paper proposes ParaGraph,a reduced instruction set computing-five(RISC-V)-based software-hardware co-designed graph computing accelerator that can process graph algorithms in parallel,and also establishes a performance evaluation model to assess the efficiency of co-acceleration.ParaGraph handles parallel processing of typical graph algorithms on the hardware side,while performing overall functional control on the software side with custom designed instructions.ParaGraph is verified on the XCVU440 field-programmable gate array(FPGA)board with E203,a RISC-V processor.Compared with current mainstream graph computing accelerators,ParaGraph consumes 7.94%less block RAM(BRAM)resources than ThunderGP.Its power consumption is reduced by 86.90%,24.90%,and 76.38%compared with ThunderGP,HitGraph,and GraphS,respectively.The power efficiency of connected components(CC)and degree centrality(DC)algorithms is improved by an average of 6.50 times over ThunderGP,2.51 times over HitGraph,and 3.99 times over GraphS.The software-hardware co-design acceleration performance indicators H/W.Cap for CC and DC are 13.02 and 14.02,respectively.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle...The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
碳捕集与封存(Carbon capture and storage, CCS)的投资决策研究大多聚焦于单一企业的不足,从燃煤电厂角度出发,描述了两家投资主体参与市场竞争的“双寡头”情况;同时,考虑了碳价和技术创新双重不确定的影响,将碳配额和政府补贴作为鼓...碳捕集与封存(Carbon capture and storage, CCS)的投资决策研究大多聚焦于单一企业的不足,从燃煤电厂角度出发,描述了两家投资主体参与市场竞争的“双寡头”情况;同时,考虑了碳价和技术创新双重不确定的影响,将碳配额和政府补贴作为鼓励投资的激励政策,构建了CCS改造投资的实物期权评价模型。通过逆向归纳法,分别得出垄断情况和双寡头情况下的投资价值和投资临界值。研究表明:抢占投资会造成投资者的短视行为,碳价波动率、碳捕获率、技术创新幅度等参数的增大会减缓投资,政府补贴和技术创新概率的增大则会加速投资。展开更多
基金supported by the National Natural Science Foundation of China(No.22373112 to Ji Qi,No.22373111 and 21921004 to Minghui Yang)GH-fund A(No.202107011790)。
文摘In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep computing unit)heterogeneous computing platform.Multiple hybrid parallel schemes are assessed using a range of model systems,including those with up to 1200 atoms and 10000 basis func-tions.The findings of our research reveal that,during Hartree-Fock(HF)calculations,a single DCU ex-hibits 33.6 speedups over 32 C86 CPU cores.Compared with the efficiency of Wuhan Electronic Structure Package on Intel X86 and NVIDIA A100 computing platform,the Hygon platform exhibits good cost-effective-ness,showing great potential in quantum chemistry calculation and other high-performance scientific computations.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金Supported by the National Key R&D Program of China(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005)+1 种基金the Shaanxi Province Key R&D Plan(No.2022GY-027,2021GY-029)the Key Scientific Research Project of Shaanxi Department of Education(No.22JY060).
文摘Graph computing has become pervasive in many applications due to its capacity to represent complex relationships among different objects in the big data era.However,general-purpose architectures are computationally inefficient for graph algorithms,and dedicated architectures can provide high efficiency,but lack flexibility.To address these challenges,this paper proposes ParaGraph,a reduced instruction set computing-five(RISC-V)-based software-hardware co-designed graph computing accelerator that can process graph algorithms in parallel,and also establishes a performance evaluation model to assess the efficiency of co-acceleration.ParaGraph handles parallel processing of typical graph algorithms on the hardware side,while performing overall functional control on the software side with custom designed instructions.ParaGraph is verified on the XCVU440 field-programmable gate array(FPGA)board with E203,a RISC-V processor.Compared with current mainstream graph computing accelerators,ParaGraph consumes 7.94%less block RAM(BRAM)resources than ThunderGP.Its power consumption is reduced by 86.90%,24.90%,and 76.38%compared with ThunderGP,HitGraph,and GraphS,respectively.The power efficiency of connected components(CC)and degree centrality(DC)algorithms is improved by an average of 6.50 times over ThunderGP,2.51 times over HitGraph,and 3.99 times over GraphS.The software-hardware co-design acceleration performance indicators H/W.Cap for CC and DC are 13.02 and 14.02,respectively.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Natural Science Foundation of Jiangsu Province(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
文摘碳捕集与封存(Carbon capture and storage, CCS)的投资决策研究大多聚焦于单一企业的不足,从燃煤电厂角度出发,描述了两家投资主体参与市场竞争的“双寡头”情况;同时,考虑了碳价和技术创新双重不确定的影响,将碳配额和政府补贴作为鼓励投资的激励政策,构建了CCS改造投资的实物期权评价模型。通过逆向归纳法,分别得出垄断情况和双寡头情况下的投资价值和投资临界值。研究表明:抢占投资会造成投资者的短视行为,碳价波动率、碳捕获率、技术创新幅度等参数的增大会减缓投资,政府补贴和技术创新概率的增大则会加速投资。