期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
微机控制水泥生料配料系统的实现 被引量:2
1
作者 李心广 欧青立 李苏梅 《湘潭矿业学院学报》 1995年第1期33-37,共5页
本文论述了水泥厂微机控制水泥生料配料系统的构成原理、实现方法以及运行结果。图3,参3。
关键词 计算机控制 生料配料系统 水泥
在线阅读 下载PDF
铸铁表面的电刷镀工艺研究
2
作者 杨建桥 张光华 +1 位作者 晁怀瑞 程健 《轻工机械》 CAS 1995年第3期38-41,共4页
本文采用正交原理设计试验,直方图分析技术,对电刷镀工艺中镀层的结合强度影响因素进行了研究。结论:电刷镀技术是一种性能优良简便易行的修复工艺,应在制浆造纸设备维修中广泛采用;在铸铁表面刷镀层结合强度的影响因素中,活化液... 本文采用正交原理设计试验,直方图分析技术,对电刷镀工艺中镀层的结合强度影响因素进行了研究。结论:电刷镀技术是一种性能优良简便易行的修复工艺,应在制浆造纸设备维修中广泛采用;在铸铁表面刷镀层结合强度的影响因素中,活化液及活化工艺影响最大,其次是底层刷镀电压和底层镀液,而电净液的影响最小;实际操作中应采用先用2号再3号活化液的活化工艺.底层刷镀电压应为10V左右。底层镀液可以采用高速镍或特殊镍。 展开更多
关键词 铸铁 电刷镀 工艺 造纸机械
在线阅读 下载PDF
Machine vision-based automatic fruit quality detection and grading
3
作者 Amna Muhammad Waqar AKRAM +4 位作者 Guiqiang LI Muhammad Zuhaib AKRAM Muhammad FAHEEM Muhammad Mubashar OMAR Muhammad Ghulman HASSAN 《Frontiers of Agricultural Science and Engineering》 2025年第2期274-287,共14页
Artificial intelligence-based automatic systems can reduce time,human error and post-harvest operations.By using such systems,food items can be successfully classified and graded based on defects.For this context,a ma... Artificial intelligence-based automatic systems can reduce time,human error and post-harvest operations.By using such systems,food items can be successfully classified and graded based on defects.For this context,a machine vision system was developed for fruit grading based on defects.The prototype consisted of defective fruit detection and mechanical sorting systems.Image processing algorithms and deep learning frameworks were used for detection of defective fruit.Different image processing algorithms including preprocessing,thresholding,morphological and bitwise operations combined with a deep leaning algorithm,i.e.,convolutional neural network(CNN),were applied to fruit images for the detection of defective fruit.The data set used for training CNN model consisted of fruit images collected from a publiclyavailable data set and captured fruit images:1799 and 1017 for mangoes and tomatoes,respectively.Subsequent to defective fruit detection,the information obtained was communicated to microcontroller that further actuated the mechanical sorting system accordingly.In addition,the system was evaluated experimentally in terms of detection accuracy,sorting accuracy and computational time.For the image processing algorithms scheme,the detection accuracy for mango and tomato was 89% and 92%,respectively,and for CNN architecture used,the validation accuracy for mangoes and tomatoes was 95% and 94%,respectively. 展开更多
关键词 computerand machine vision convolution neural network deeplearning defective fruit detection fruitgrading MICROCONTROLLER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部