BACKGROUND Congenital maxillomandibular syngnathia is an extremely rare disorder characterized by craniofacial malformations and inability to open the mouth adequately, which leads to problems with feeding, swallowing...BACKGROUND Congenital maxillomandibular syngnathia is an extremely rare disorder characterized by craniofacial malformations and inability to open the mouth adequately, which leads to problems with feeding, swallowing, and breathing as well as temporomandibular joint ankylosis. The main goal of the surgery is to release the ankylosis, establish functioning mandible, and prevent re-fusion.However, surgical procedures for this disease are rarely reported.CASE SUMMARY Here, we report a 7-mo-old girl with bilateral maxillomandibular syngnathia. The patient presented with difficulty in feeding, breathing, sounding, and swallowing and had developmental dysplasia. For treatment, we performed bone isolation by computer-assisted navigation and used silicone to fix the wound surface to prevent refusion of bone. To our knowledge, this is the only syngnathia case in the literature treated using computer-assisted navigation. With the guidance of precise navigation, we were able to minimize operation time by at least one hour,the patient's blood vessels, nerves, and tooth germs were well protected, and excessive bleeding was avoided. After six weeks, the patient showed improvement in mouth opening and no major issues of feeding.CONCLUSION Application of computer-assisted navigation can significantly improve accuracy,effectiveness, and surgical safety in correcting congenital maxillomandibular syngnathia.展开更多
Background Percutaneous pedicle screw use has a high rate of cranial facet joint violations (FVs) because of the facet joint being indirectly visualized.Computer-assisted navigation shows the anatomic structures cle...Background Percutaneous pedicle screw use has a high rate of cranial facet joint violations (FVs) because of the facet joint being indirectly visualized.Computer-assisted navigation shows the anatomic structures clearly,and may help to lower the rate of FVs during pedicle screw insertion.This study used computed tomography (CT) to evaluate and compare the incidence of FVs between percutaneous and open surgeries employing computer-assisted navigation for the implantation of pedicle screw instrumentation during lumbar fusions.Methods A prospective study,including 142 patients having lumbar and lumbosacral fusion,was conducted between January 2013 and April 2014.All patients had bilateral posterior pedicle screw-rod instrumentation (top-loading screws) implanted by the same group of surgeons; intraoperative 3-dimensional computer navigation was used during the procedures.All patients underwent CT examinations within 6 months postoperation.The CT scans were independently reviewed by three reviewers blinded to the technique used.Results The cohort comprised 68 percutaneous and 74 open cases (136 and 148 superior-level pedicle screw placements,respectively).Overall,superior-level FVs occurred in 20 patients (20/142,14.1%),involving 27 top screws (27/284,9.5%).The percutaneous technique (7.4% of patients,3.7% of top screws) had a significantly lower violation rate than the open procedure (20.3% of patients,14.9% of top screws).The open group also had significantly more serious violations than did the percutaneous group.Both groups had a higher violation rate when the cranial fixation involved the L5.A 1-level open procedure had a higher violation rate than did the 2-and 3-level surgeries.Conclusions With computer-assisted navigation,the placement of top-loading percutaneous screws carries a lower risk of adjacent-FVs than does the open technique; when FVs occur,they tend to be less serious.Performing a single-level open lumbar fusion,or the fusion of the L5-S1 segment,requires caution to avoid cranial adjacent FVs.展开更多
Computer-assisted procedures have recently been introduced for navigated femoral neck screw placement. Currently there is little information available regarding accuracy and efficiency of the different navigated proce...Computer-assisted procedures have recently been introduced for navigated femoral neck screw placement. Currently there is little information available regarding accuracy and efficiency of the different navigated procedures. The aim of this study was to compare two fluoroscopic navigation tracking technologies, a novel bi-planar robot navigation and standardized optoelectronic navigation, versus standard freehand fluoroscopic insertion in a Synbone hip model. Methods Eighteen fixed Synbone hip models were divided into 3 groups. C-arm navigated cannulated screws (AO-ASIF, diameter 7.3 mm) were inserted using freehand targeting (control group). A novel bi-planar robot system (TINAV, GD2000) and an optoelectronic system (Stryker OTS Navigation System) were used for the navigated procedures (robot group and optoelectronic group). Accuracy was measured using radiographic evaluation including the measurement of screw parallelism and decentralization, and joint penetration. To evaluate the efficiency, the number of guidewire passes, operative time and fluoroscopic images taken were noted. Results The two computer-assisted systems provided significantly improved accuracy compared to the freehand technique. Each of the parameters, including guidewire passes and number of fluoroscopy images, was significantly lower when using the computer-assisted systems than for freehand-unguided insertion (P 〈0.05), but operative time was significantly shorter when using freehand-unguided insertion than for the computer-assisted systems (P 〈0.05). Accuracy, operative time and number of fluoroscopy images taken were similar among the two navigated groups (P 〉0.05), but guidewire passes in the robot group were significantly less than in the optoelectronic group (P 〈0.05). Conclusions Both bi-planar robot navigation and optoelectronic navigation were similarly accurate and have the potential to improve accuracy and reduce radiation for freehand fluoroscopic targeting for insertion of cannulated screws in femoral neck fractures. Guidewire passes in the robot group were significantly less than in the optoelectronic group. However, both navigated procedures were associated with time-consuming registration and hi.qh rates of failed matching procedures.展开更多
Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation sys...Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation systems face challenges such as high equipment costs,complex operation,bulky size,and insufficient anti-interference performance.To address these limitations,our study developed and validated a novel portable electromagnetic neuronavigation system designed to improve the precision,accessibility,and clinical applicability of electromagnetic navigation technology in cranial surgery.Methods The software and hardware architecture of a portable neural magnetic navigation system was designed.The key technologies of the system were analysed,including electromagnetic positioning algorithms,miniaturized sensor design,optimization of electromagnetic positioning and navigation algorithms,anti-interference signal processing methods,and fast three-dimensional reconstruction algorithms.A prototype was developed,and its accuracy was tested.Finally,a preliminary clinical application evaluation was conducted.Results This study successfully developed a comprehensive portable electromagnetic neuronavigation system capable of achieving preoperative planning,intraoperative real-time positioning and navigation,and postoperative evaluation of navigation outcomes.Through rigorous collaborative testing of the system’s software and hardware,the accuracy of electromagnetic neuronavigation has been validated to meet clinical requirements.Conclusions This study developed a portable neuroelectromagnetic navigation system and validated its effectiveness and safety through rigorous model testing and preliminary clinical applications.The system is characterized by its compact size,high precision,excellent portability,and user-friendly operation,making it highly valuable for promoting navigation technology and advancing the precision and minimally invasive nature of neurosurgical procedures.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigati...Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigation.However,with single-channel imaging,surgeons must frequently switch between the surgi⁃cal field and the NIR-II images on the monitor.To address this,a coaxial dual-channel imaging system that com⁃bines visible light and 1100 nm longpass(1100LP)fluorescence was developed.The system features a custom⁃ized coaxial dual-channel lens with optimized distortion,achieving precise alignment with an error of less than±0.15 mm.Additionally,the shared focusing mechanism simplifies operation.Using FDA-approved indocya⁃nine green(ICG),the system was successfully applied in dual-channel guided rat lymph node excision,and blood supply assessment of reconstructed human flap.This approach enhances surgical precision,improves opera⁃tional efficiency,and provides a valuable reference for further clinical translation of NIR-II fluorescence imaging.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at...Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.展开更多
As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of...As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.展开更多
1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become ...1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion.展开更多
In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited ...In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia.展开更多
This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho...This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.展开更多
BACKGROUND The gold standard for colorectal polyp screening is currently colonoscopy,but the miss rate is still high and the adenoma detection rate and polyp detection rate are still low.The risk factors include the p...BACKGROUND The gold standard for colorectal polyp screening is currently colonoscopy,but the miss rate is still high and the adenoma detection rate and polyp detection rate are still low.The risk factors include the patient,operators,and the tools used.The use of artificial intelligence(AI)in colonoscopy has gained popularity by assisting endoscopists in the detection and characterization of polyps.AIM To evaluate the diagnostic performance of AI-assisted colonoscopy[computer assisted diagnosis(CAD)eye function]for colorectal polyp characterization.METHODS This study used a cross-sectional design conducted at the Gastrointestinal Endoscopy Center of Dr.Cipto Mangunkusumo Hospital in January-May 2024 on adult patients with suspected colorectal polyps.RESULTS A total of 60 patients with 100 polyps were involved in this study.Based on the results of the examination,it was found that the AI CAD eye function examination had a sensitivity of 79.17%,specificity of 75.00%,positive predictive value(PPV)of 89.06%,negative predictive value(NPV)of 58.33%,and accuracy of 78.00%.In polyps with diminutive size,sensitivity was 86.27%,specificity was 60.00%,PPV was 95.65%,NPV was 30.00%,and accuracy was 83.93%.Meanwhile,in polyps with non-diminutive size,sensitivity was 61.90%,specificity was 78.26%,PPV was 72.22%,NPV was 69.23%,and accuracy was 70.45%.In polyps on the left side of the colon,sensitivity was 78.85%,specificity was 81.25%,PPV was 93.18%,NPV was 54.17%,and accuracy was 79.41%.Meanwhile,in rightsided polyps the sensitivity was 80.00%,specificity was 66.67%,PPV was 80.00%,NPV was 66.67%,and accuracy was 75.00%.In sessile polyps the sensitivity was 81.54%,specificity was 50.00%,PPV was 91.38%,NPV was 29.41%,and accuracy was 77.33%.Meanwhile,in non-sessile polyps,the sensitivity was 57.14%,specificity was 88.89%,PPV was 66.67%,NPV was 84.21%,and accuracy was 80.00%.CONCLUSION AI CAD eye function examination had a high sensitivity value in diminutive,sessile polyps and right-sided polyps and a high specificity in non-diminutive,non-sessile polyps and left-sided polyps.展开更多
In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies an...In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.展开更多
Objective:To observe the guiding role of image navigation technology in the treatment of patients with tuberculosis.Methods:A total of 188 patients with multidrug-resistant tuberculosis(MDR-TB)and rifampin-resistant t...Objective:To observe the guiding role of image navigation technology in the treatment of patients with tuberculosis.Methods:A total of 188 patients with multidrug-resistant tuberculosis(MDR-TB)and rifampin-resistant tuberculosis(RR-TB)who were hospitalized in the hospital from September 2023 to September 2024 were included.After random equal division,94 patients were included in the control group and received systemic anti-tuberculosis chemotherapy;94 patients were included in the treatment group.Based on systemic anti-tuberculosis treatment,digital subtraction angiography(DSA)technology was used to inject targeted drugs into the bronchial lumen through bronchoscopy to complete anti-tuberculosis treatment.The changes in sputum bacteria and imaging were observed in the two groups.Results:The sputum negative conversion rate in the treatment group was significantly higher than that in the control group(86.2%;70.2%)(u=2.74,P<0.01).The absorption rate of CT imaging lesions(significant absorption)was significantly higher than that of the control group(83.0%;50%)(u=2.45,P<0.05).The closure rate of chest CT cavities was significantly higher than that of the control group(74.2%;39.1%)(u=2.20,P<0.05).During the treatment process,the improvement of clinical symptoms was significantly higher than that of the control group,and the difference was statistically significant.There was no statistically significant difference in the incidence of adverse reactions between the two groups(x^(2)=0.434,P>0.05).Conclusion:Based on DSA,targeted drug infusion within the bronchoscope can significantly improve the efficacy of the disease,with mild adverse reactions that patients can tolerate.It is worthy of promotion and application.展开更多
Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,wh...Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist users to implement accurate navigation(e.g.,docking)in the environment without prior maps.In order to overcome the problem of repeated oscillations during the docking of traditional local path planning algorithms,this paper adopts a mode-switching method and uses feedback control to perform docking when approaching semantic goals.At last,comparative experiments were carried out in the real environment.Results show that our method is superior in terms of safety,comfort and docking accuracy.展开更多
Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environ...Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns.This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization,aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment.We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining crowd density,relative distance,andmotion speed to quantify environmental complexity and realize crowd-density-sensitive risk assessment dynamically.We apply an exponential decay function to reward design to address the linear conflict problem of fixed weights in multi-objective optimization.We adaptively adjust weight allocation between safety constraints and navigation efficiency based on real-time risk values,prioritizing safety in highly dense areas and navigation efficiency in sparse areas.Experimental results show that our method improves the navigation success rate by 9.0%over state-of-the-art models in high-density scenarios,with a 10.7%reduction in intrusion time ratio.Simulation comparisons validate the risk field model’s ability to capture risk superposition effects in dense scenarios and the suppression of near-field dangerous behaviors by the exponential decay mechanism.Our parametric optimization paradigm establishes an explicit mapping between navigation objectives and risk parameters through rigorous mathematical formalization,providing an interpretable approach for safe deployment of service robots in dynamic environments.展开更多
Endoscopic transnasal optic nerve decompression surgery plays a crucial role in minimal invasive treatment of complex traumatic optic neuropathy.However,a major challenge faced during the procedure is the inability to...Endoscopic transnasal optic nerve decompression surgery plays a crucial role in minimal invasive treatment of complex traumatic optic neuropathy.However,a major challenge faced during the procedure is the inability to visualize the optic nerve intraoperatively.To address this issue,an endoscopic image-based augmented reality surgical navigation system is developed in this study.The system aims to virtually fuse the optic nerve onto the endoscopic images,assisting surgeons in determining the optic nerve’s position and reducing surgical risks.First,a calibration algorithm based on a checkerboard grid of immobile points is proposed,building upon existing calibration methods.Additionally,to tackle accuracy issues associated with augmented reality technology,an optical navigation and visual fusion compensation algorithm is proposed to improve the intraoperative tracking accuracy.To evaluate the system’s performance,model experiments were meticulously designed and conducted.The results confirm the accuracy and stability of the proposed system,with an average tracking error of(0.99±0.46)mm.This outcome demonstrates the effectiveness of the proposed algorithm in improving the augmented reality surgical navigation system’s accuracy.Furthermore,the system successfully displays hidden optic nerves and other deep tissues,thus showcasing the promising potential for future applications in orbital and maxillofacial surgery.展开更多
This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars...This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.展开更多
Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of mult...Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of multi-sensor fusion localization algorithms for smart plastering robots,and an analysis of path planning and navigation functions for smart plastering robots.It is hoped that through this analysis,a reference is provided for the path planning and navigation design of such robots to meet their practical application needs.展开更多
基金Supported by Ninth People's Hospital affiliated to Shanghai Jiao Tong University,School of Medicine "Multi-Disciplinary Team" Clinical Research Project,No.201701011
文摘BACKGROUND Congenital maxillomandibular syngnathia is an extremely rare disorder characterized by craniofacial malformations and inability to open the mouth adequately, which leads to problems with feeding, swallowing, and breathing as well as temporomandibular joint ankylosis. The main goal of the surgery is to release the ankylosis, establish functioning mandible, and prevent re-fusion.However, surgical procedures for this disease are rarely reported.CASE SUMMARY Here, we report a 7-mo-old girl with bilateral maxillomandibular syngnathia. The patient presented with difficulty in feeding, breathing, sounding, and swallowing and had developmental dysplasia. For treatment, we performed bone isolation by computer-assisted navigation and used silicone to fix the wound surface to prevent refusion of bone. To our knowledge, this is the only syngnathia case in the literature treated using computer-assisted navigation. With the guidance of precise navigation, we were able to minimize operation time by at least one hour,the patient's blood vessels, nerves, and tooth germs were well protected, and excessive bleeding was avoided. After six weeks, the patient showed improvement in mouth opening and no major issues of feeding.CONCLUSION Application of computer-assisted navigation can significantly improve accuracy,effectiveness, and surgical safety in correcting congenital maxillomandibular syngnathia.
文摘Background Percutaneous pedicle screw use has a high rate of cranial facet joint violations (FVs) because of the facet joint being indirectly visualized.Computer-assisted navigation shows the anatomic structures clearly,and may help to lower the rate of FVs during pedicle screw insertion.This study used computed tomography (CT) to evaluate and compare the incidence of FVs between percutaneous and open surgeries employing computer-assisted navigation for the implantation of pedicle screw instrumentation during lumbar fusions.Methods A prospective study,including 142 patients having lumbar and lumbosacral fusion,was conducted between January 2013 and April 2014.All patients had bilateral posterior pedicle screw-rod instrumentation (top-loading screws) implanted by the same group of surgeons; intraoperative 3-dimensional computer navigation was used during the procedures.All patients underwent CT examinations within 6 months postoperation.The CT scans were independently reviewed by three reviewers blinded to the technique used.Results The cohort comprised 68 percutaneous and 74 open cases (136 and 148 superior-level pedicle screw placements,respectively).Overall,superior-level FVs occurred in 20 patients (20/142,14.1%),involving 27 top screws (27/284,9.5%).The percutaneous technique (7.4% of patients,3.7% of top screws) had a significantly lower violation rate than the open procedure (20.3% of patients,14.9% of top screws).The open group also had significantly more serious violations than did the percutaneous group.Both groups had a higher violation rate when the cranial fixation involved the L5.A 1-level open procedure had a higher violation rate than did the 2-and 3-level surgeries.Conclusions With computer-assisted navigation,the placement of top-loading percutaneous screws carries a lower risk of adjacent-FVs than does the open technique; when FVs occur,they tend to be less serious.Performing a single-level open lumbar fusion,or the fusion of the L5-S1 segment,requires caution to avoid cranial adjacent FVs.
文摘Computer-assisted procedures have recently been introduced for navigated femoral neck screw placement. Currently there is little information available regarding accuracy and efficiency of the different navigated procedures. The aim of this study was to compare two fluoroscopic navigation tracking technologies, a novel bi-planar robot navigation and standardized optoelectronic navigation, versus standard freehand fluoroscopic insertion in a Synbone hip model. Methods Eighteen fixed Synbone hip models were divided into 3 groups. C-arm navigated cannulated screws (AO-ASIF, diameter 7.3 mm) were inserted using freehand targeting (control group). A novel bi-planar robot system (TINAV, GD2000) and an optoelectronic system (Stryker OTS Navigation System) were used for the navigated procedures (robot group and optoelectronic group). Accuracy was measured using radiographic evaluation including the measurement of screw parallelism and decentralization, and joint penetration. To evaluate the efficiency, the number of guidewire passes, operative time and fluoroscopic images taken were noted. Results The two computer-assisted systems provided significantly improved accuracy compared to the freehand technique. Each of the parameters, including guidewire passes and number of fluoroscopy images, was significantly lower when using the computer-assisted systems than for freehand-unguided insertion (P 〈0.05), but operative time was significantly shorter when using freehand-unguided insertion than for the computer-assisted systems (P 〈0.05). Accuracy, operative time and number of fluoroscopy images taken were similar among the two navigated groups (P 〉0.05), but guidewire passes in the robot group were significantly less than in the optoelectronic group (P 〈0.05). Conclusions Both bi-planar robot navigation and optoelectronic navigation were similarly accurate and have the potential to improve accuracy and reduce radiation for freehand fluoroscopic targeting for insertion of cannulated screws in femoral neck fractures. Guidewire passes in the robot group were significantly less than in the optoelectronic group. However, both navigated procedures were associated with time-consuming registration and hi.qh rates of failed matching procedures.
基金funded by National Natural Science Foundation of China(No.82272134)Innovative Research Group Project of the National Natural Science Foundation of China(No.82272134,Xiao-lei Chen).
文摘Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation systems face challenges such as high equipment costs,complex operation,bulky size,and insufficient anti-interference performance.To address these limitations,our study developed and validated a novel portable electromagnetic neuronavigation system designed to improve the precision,accessibility,and clinical applicability of electromagnetic navigation technology in cranial surgery.Methods The software and hardware architecture of a portable neural magnetic navigation system was designed.The key technologies of the system were analysed,including electromagnetic positioning algorithms,miniaturized sensor design,optimization of electromagnetic positioning and navigation algorithms,anti-interference signal processing methods,and fast three-dimensional reconstruction algorithms.A prototype was developed,and its accuracy was tested.Finally,a preliminary clinical application evaluation was conducted.Results This study successfully developed a comprehensive portable electromagnetic neuronavigation system capable of achieving preoperative planning,intraoperative real-time positioning and navigation,and postoperative evaluation of navigation outcomes.Through rigorous collaborative testing of the system’s software and hardware,the accuracy of electromagnetic neuronavigation has been validated to meet clinical requirements.Conclusions This study developed a portable neuroelectromagnetic navigation system and validated its effectiveness and safety through rigorous model testing and preliminary clinical applications.The system is characterized by its compact size,high precision,excellent portability,and user-friendly operation,making it highly valuable for promoting navigation technology and advancing the precision and minimally invasive nature of neurosurgical procedures.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
基金Supported by the National Natural Science Foundation of China(U23A20487)the National Key R&D Program of China(2022YFB3206000)+1 种基金Dr.Li Dak Sum&Yip Yio Chin Development Fund for Regenerative Medicine,Zhejiang Universitythe National Natural Science Foundation of China(61975172).
文摘Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigation.However,with single-channel imaging,surgeons must frequently switch between the surgi⁃cal field and the NIR-II images on the monitor.To address this,a coaxial dual-channel imaging system that com⁃bines visible light and 1100 nm longpass(1100LP)fluorescence was developed.The system features a custom⁃ized coaxial dual-channel lens with optimized distortion,achieving precise alignment with an error of less than±0.15 mm.Additionally,the shared focusing mechanism simplifies operation.Using FDA-approved indocya⁃nine green(ICG),the system was successfully applied in dual-channel guided rat lymph node excision,and blood supply assessment of reconstructed human flap.This approach enhances surgical precision,improves opera⁃tional efficiency,and provides a valuable reference for further clinical translation of NIR-II fluorescence imaging.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China(42388102)the National Natural Science Foundation of China(42174030)+2 种基金the Special Fund of Hubei Luojia Laboratory(220100020)the Major Science and Technology Program for Hubei Province(2022AAA002)the Fundamental Research Funds for the Central Universities of China(2042022dx0001 and 2042023kfyq01)。
文摘Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.
文摘As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.
基金supported by the National Level Project of China (No. 2020-JCJQ-ZQ-059)。
文摘1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion.
基金supported by the National Natural Science Foundation of China(No.U2037602)。
文摘In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia.
基金supported in part by the Doctoral Initiation Fund of Nanchang Hangkong University(No.EA202403107)Jiangxi Province Early Career Youth Science and Technology Talent Training Project(No.CK202403509).
文摘This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.
文摘BACKGROUND The gold standard for colorectal polyp screening is currently colonoscopy,but the miss rate is still high and the adenoma detection rate and polyp detection rate are still low.The risk factors include the patient,operators,and the tools used.The use of artificial intelligence(AI)in colonoscopy has gained popularity by assisting endoscopists in the detection and characterization of polyps.AIM To evaluate the diagnostic performance of AI-assisted colonoscopy[computer assisted diagnosis(CAD)eye function]for colorectal polyp characterization.METHODS This study used a cross-sectional design conducted at the Gastrointestinal Endoscopy Center of Dr.Cipto Mangunkusumo Hospital in January-May 2024 on adult patients with suspected colorectal polyps.RESULTS A total of 60 patients with 100 polyps were involved in this study.Based on the results of the examination,it was found that the AI CAD eye function examination had a sensitivity of 79.17%,specificity of 75.00%,positive predictive value(PPV)of 89.06%,negative predictive value(NPV)of 58.33%,and accuracy of 78.00%.In polyps with diminutive size,sensitivity was 86.27%,specificity was 60.00%,PPV was 95.65%,NPV was 30.00%,and accuracy was 83.93%.Meanwhile,in polyps with non-diminutive size,sensitivity was 61.90%,specificity was 78.26%,PPV was 72.22%,NPV was 69.23%,and accuracy was 70.45%.In polyps on the left side of the colon,sensitivity was 78.85%,specificity was 81.25%,PPV was 93.18%,NPV was 54.17%,and accuracy was 79.41%.Meanwhile,in rightsided polyps the sensitivity was 80.00%,specificity was 66.67%,PPV was 80.00%,NPV was 66.67%,and accuracy was 75.00%.In sessile polyps the sensitivity was 81.54%,specificity was 50.00%,PPV was 91.38%,NPV was 29.41%,and accuracy was 77.33%.Meanwhile,in non-sessile polyps,the sensitivity was 57.14%,specificity was 88.89%,PPV was 66.67%,NPV was 84.21%,and accuracy was 80.00%.CONCLUSION AI CAD eye function examination had a high sensitivity value in diminutive,sessile polyps and right-sided polyps and a high specificity in non-diminutive,non-sessile polyps and left-sided polyps.
基金co-supported by the National Natural Science Foundation of China(Nos.92371201 and 52192633)the Natural Science Foundation of Shaanxi Province of China(No.2022JC-03)the Aeronautical Science Foundation of China(No.ASFC-20220019070002)。
文摘In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.
基金Science and Education Department Harbin Health Committee Project。
文摘Objective:To observe the guiding role of image navigation technology in the treatment of patients with tuberculosis.Methods:A total of 188 patients with multidrug-resistant tuberculosis(MDR-TB)and rifampin-resistant tuberculosis(RR-TB)who were hospitalized in the hospital from September 2023 to September 2024 were included.After random equal division,94 patients were included in the control group and received systemic anti-tuberculosis chemotherapy;94 patients were included in the treatment group.Based on systemic anti-tuberculosis treatment,digital subtraction angiography(DSA)technology was used to inject targeted drugs into the bronchial lumen through bronchoscopy to complete anti-tuberculosis treatment.The changes in sputum bacteria and imaging were observed in the two groups.Results:The sputum negative conversion rate in the treatment group was significantly higher than that in the control group(86.2%;70.2%)(u=2.74,P<0.01).The absorption rate of CT imaging lesions(significant absorption)was significantly higher than that of the control group(83.0%;50%)(u=2.45,P<0.05).The closure rate of chest CT cavities was significantly higher than that of the control group(74.2%;39.1%)(u=2.20,P<0.05).During the treatment process,the improvement of clinical symptoms was significantly higher than that of the control group,and the difference was statistically significant.There was no statistically significant difference in the incidence of adverse reactions between the two groups(x^(2)=0.434,P>0.05).Conclusion:Based on DSA,targeted drug infusion within the bronchoscope can significantly improve the efficacy of the disease,with mild adverse reactions that patients can tolerate.It is worthy of promotion and application.
基金the Technology Project Managed by the State Grid Corporation of China(No.5108-202218280A-2-249-XG)。
文摘Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist users to implement accurate navigation(e.g.,docking)in the environment without prior maps.In order to overcome the problem of repeated oscillations during the docking of traditional local path planning algorithms,this paper adopts a mode-switching method and uses feedback control to perform docking when approaching semantic goals.At last,comparative experiments were carried out in the real environment.Results show that our method is superior in terms of safety,comfort and docking accuracy.
基金supported by the Sichuan Science and Technology Program(2025ZNSFSC0005).
文摘Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns.This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization,aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment.We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining crowd density,relative distance,andmotion speed to quantify environmental complexity and realize crowd-density-sensitive risk assessment dynamically.We apply an exponential decay function to reward design to address the linear conflict problem of fixed weights in multi-objective optimization.We adaptively adjust weight allocation between safety constraints and navigation efficiency based on real-time risk values,prioritizing safety in highly dense areas and navigation efficiency in sparse areas.Experimental results show that our method improves the navigation success rate by 9.0%over state-of-the-art models in high-density scenarios,with a 10.7%reduction in intrusion time ratio.Simulation comparisons validate the risk field model’s ability to capture risk superposition effects in dense scenarios and the suppression of near-field dangerous behaviors by the exponential decay mechanism.Our parametric optimization paradigm establishes an explicit mapping between navigation objectives and risk parameters through rigorous mathematical formalization,providing an interpretable approach for safe deployment of service robots in dynamic environments.
基金the National Natural Science Foundation of China(Nos.82330063 and M-0019)the Interdisciplinary Program of Shanghai Jiao Tong University(Nos.YG2022QN056,YG2023ZD19,and YG2023ZD15)+2 种基金the Cross Disciplinary Research Fund of Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(No.JYJC202115)the Translation Clinical R&D Project of Medical Robot of Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(No.IMR-NPH202002)the Shanghai Key Clinical Specialty,Shanghai Eye Disease Research Center(No.2022ZZ01003)。
文摘Endoscopic transnasal optic nerve decompression surgery plays a crucial role in minimal invasive treatment of complex traumatic optic neuropathy.However,a major challenge faced during the procedure is the inability to visualize the optic nerve intraoperatively.To address this issue,an endoscopic image-based augmented reality surgical navigation system is developed in this study.The system aims to virtually fuse the optic nerve onto the endoscopic images,assisting surgeons in determining the optic nerve’s position and reducing surgical risks.First,a calibration algorithm based on a checkerboard grid of immobile points is proposed,building upon existing calibration methods.Additionally,to tackle accuracy issues associated with augmented reality technology,an optical navigation and visual fusion compensation algorithm is proposed to improve the intraoperative tracking accuracy.To evaluate the system’s performance,model experiments were meticulously designed and conducted.The results confirm the accuracy and stability of the proposed system,with an average tracking error of(0.99±0.46)mm.This outcome demonstrates the effectiveness of the proposed algorithm in improving the augmented reality surgical navigation system’s accuracy.Furthermore,the system successfully displays hidden optic nerves and other deep tissues,thus showcasing the promising potential for future applications in orbital and maxillofacial surgery.
基金supported by the National Key Research and Development Program of China(2022YFA1004703)the National Natural Science Foundation of China(62088101).
文摘This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.
基金Science and Technology Research Project of Chongqing Education Commission(Project No.:KJQN202401902)Chongqing Construction Science and Technology Plan Project(Project No.:Chinese Society For Urban Studies,2024:3-24)+1 种基金cientific Research Fund Project of Chongqing Institute of Engineering(Project No.:2022gcky01)College Student Innovation and Entrepreneurship Training Program Project of Chongqing Institute of Engineering(Project No.:CXCY2024018)。
文摘Taking modern indoor building construction as an example,this study analyzes the path planning and navigation of a smart plastering robot.It includes a basic introduction to smart plastering robots,an analysis of multi-sensor fusion localization algorithms for smart plastering robots,and an analysis of path planning and navigation functions for smart plastering robots.It is hoped that through this analysis,a reference is provided for the path planning and navigation design of such robots to meet their practical application needs.