The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the...The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.展开更多
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien...The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.展开更多
Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as ...Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as heuristics, mathematical programming, and pinch analysis. Nonetheless, progress continues from different formulations of design problems using bottom-up approaches, to the utilization of new tools such as artificial intelligence (AI). It was not until recently that AI methods were involved again in assisting the decision-making steps for chemical engineers. This has led to a gap in understanding AI's capabilities and limitations within the field of CPD research. Thus, this article aims to provide an overview of conventional methods for process synthesis, integration, and intensification approaches and survey emerging AI-assisted process design applications to bridge the gap. A review of all AI-assisted methods is highlighted, where AI is used as a key component within a design framework, to explain the utility of AI with comparative examples. The studies were categorized into supervised and reinforcement learning based on the machine learning training principles they used to enhance the understanding of requirements, benefits, and challenges that come with it. Furthermore, we provide challenges and prospects that can facilitate or hinder the progress of AI-assisted approaches in the future.展开更多
[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin cont...[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.展开更多
Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced ima...Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.展开更多
Casting technology is a fundamental and irreplaceable method in advanced manufacturing.The design and optimization of casting processes are crucial for producing high-performance,complex metal components.Transitioning...Casting technology is a fundamental and irreplaceable method in advanced manufacturing.The design and optimization of casting processes are crucial for producing high-performance,complex metal components.Transitioning from traditional process design based on"experience+experiment"to an integrated,intelligent approach is essential for achieving precise control over microstructure and properties.This paper provides a comprehensive and systematic review of intelligent casting process design and optimization for the first time.First,it explores process design methods based on casting simulation and integrated computational materials engineering(ICME).It then examines the application of machine learning(ML)in process design,highlighting its efficiency and existing challenges,along with the development of integrated intelligent design platforms.Finally,future research directions are discussed to drive further advancements and sustainable development in intelligent casting design and optimization.展开更多
The forming quality of metal bipolar plate(BPP)flow channels in proton exchange membrane fuel cells(PEMFCs)is a key factor affecting battery performance.A flow channel with straight sidewalls and a low thinning rate c...The forming quality of metal bipolar plate(BPP)flow channels in proton exchange membrane fuel cells(PEMFCs)is a key factor affecting battery performance.A flow channel with straight sidewalls and a low thinning rate can enhance battery output.Roll forming,as a new technology for BPP production,offers advantages such as a low thinning rate and high efficiency.However,existing roll curve design methods struggle to accommodate both low thinning rates and straight sidewall angles simultaneously.This study aims to develop flow channels with right-angled sidewalls,which provide benefits such as a low thinning rate,reduced residual stress,and high accuracy.A roller tooth profile was designed to achieve a flow channel with right-angled sidewalls and minimal thinning.Simulations and experiments were conducted to validate the feasibility of this novel design method for the roll forming process.The study investigated the effects of roller tooth parameters on sidewall angle,thinning rate,and residual stress.A multifactor evaluation method was developed to optimize the tip fillet radius and the tooth profile backlash of the roller.The results indicated that the tip fillet radius and the tooth profile backlash were negatively correlated with the sidewall angle.As the tip fillet radius and tooth profile backlash increased,the thinning rate and residual stress decreased.With a tip fillet radius of 0.25 mm and a tooth profile backlash of 0.19 mm,the flow channel achieved an approximately right-angled sidewall,a maximum thinning rate of 7.7%,a 29.6%reduction in maximum residual stress,and maximum and average residual stress imbalance values of 7.1%and 3.2%,respectively.This study proposes a new design method for a right-angled sidewall runner roller gear profile,facilitating the roll forming of metal BPPs with right-angled sidewalls and minimal thinning.This method provides theoretical support for the large-scale application of roll forming in the manufacture of PEMFC BPPs.展开更多
This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virt...This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences.展开更多
This paper focuses on the design of fixtures for NP2 and NP4 cylinder heads on a horizontal machining center of flexible machining automatic lines.It began with an analysis of the diagrams of part processing and worki...This paper focuses on the design of fixtures for NP2 and NP4 cylinder heads on a horizontal machining center of flexible machining automatic lines.It began with an analysis of the diagrams of part processing and working procedure which formed the basis for the design of the processing technology scheme,a selection of suitable machine tools,and the setting of processing parameters.Fixtures tailored to the chosen machine tools were then designed to meet the processing requirements.Additional aspects of the project included the design of part drawings,calculation of working time quota,design of auxiliary guides,support clamping,and hydraulic circuits,all aimed at fulfilling practical production requirements.展开更多
Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle...Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtaine...The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.展开更多
Based on probability and statistic, a design method of precision cam profileconcerning the influence of random processing errors is advanced. Combining the design with theprocess, which can be used to predict that cam...Based on probability and statistic, a design method of precision cam profileconcerning the influence of random processing errors is advanced. Combining the design with theprocess, which can be used to predict that cam profiles will be successfully processed or not in thedesign stage, design of the cam can be done by balancing the economization and reliability. Inaddition, an fuzzy deduction method based on Bayers formula is advanced to estimate processingreasonable of the designed precision cam profile, and it take few samples.展开更多
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate vario...Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.展开更多
As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal sha...As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.展开更多
Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice mo...Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.展开更多
Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced...Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.展开更多
Constrained groove pressing(CGP)is a severe plastic deformation(SPD)technique used as a strengthening method for sheet metal.In the current work,an optimal/cost-saving design for CGP dies was attained using the stress...Constrained groove pressing(CGP)is a severe plastic deformation(SPD)technique used as a strengthening method for sheet metal.In the current work,an optimal/cost-saving design for CGP dies was attained using the stress analysis tool in SolidWorks Simulation Xpress wizard.This study examined low-cost and widely industrially applied aluminium materials,i.e.,pure 1050 Al and 5052 Al alloy.Each material was subjected to three passes of the CGP process using a 150 tons capacity press.For both materials,inter-pass annealing treatment was undertaken before the third pass.The effect of the number of CGP passes on the microstructure and tensile properties was studied after each pass.For CGPed pure 1050 Al with respect to the as-received material,the ultimate tensile strength(UTS),yield strength(YS)and YS/UTS ratio increased with an increasing number of CGP passes until the second pass,while elongation decreased with the number of passes.For CGPed 5052 Al alloy,the UTS and YS increased after the first pass and then decreased after the second pass.Variations in the elongation and YS/UTS ratio of 5052 Al alloy after the CGP process were insignificant.After inter-pass annealing and applying the third CGP pass,the strength of pure 1050 Al decreased,and that of 5052 Al alloy increased,which was attributed to the influence of composition on their structures.The strength-ductility balance decreased with an increasing number of CGP passes in both materials.展开更多
In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative ...In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.展开更多
文摘The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.
基金the National Natural Science Foundation of China(No.52275378)the National Key Laboratory for Precision Hot Processing of Metals(6142909200208)。
文摘The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.
基金financial support from The University of Manchester
文摘Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as heuristics, mathematical programming, and pinch analysis. Nonetheless, progress continues from different formulations of design problems using bottom-up approaches, to the utilization of new tools such as artificial intelligence (AI). It was not until recently that AI methods were involved again in assisting the decision-making steps for chemical engineers. This has led to a gap in understanding AI's capabilities and limitations within the field of CPD research. Thus, this article aims to provide an overview of conventional methods for process synthesis, integration, and intensification approaches and survey emerging AI-assisted process design applications to bridge the gap. A review of all AI-assisted methods is highlighted, where AI is used as a key component within a design framework, to explain the utility of AI with comparative examples. The studies were categorized into supervised and reinforcement learning based on the machine learning training principles they used to enhance the understanding of requirements, benefits, and challenges that come with it. Furthermore, we provide challenges and prospects that can facilitate or hinder the progress of AI-assisted approaches in the future.
基金Supported by Huang Ruisong's National Famous Old Traditional Chinese Medicine Expert Inheritance Studio Construction Project[GuoZhongYiYaoRenJiaoHan(2022)75]Hospital Pharmacy Research Project of Guangxi Pharmaceutical Association(GXYXH-202404)+4 种基金2024 Youth Science Fund Project of International Zhuang Medical Hospital(2024GZYJKT005)High-level Traditional Chinese Medicine Key Discipline Construction Project of National Administration of Traditional Chinese Medicine(ZYYZDXK-2023165)National Old Pharmaceutical Workers Inheritance Studio Construction Project of National Administration of Traditional Chinese Medicine[GuoZhongYiYaoRenJiaoHan(2024)255]Talent Cultivation Project-"Young Crop Project"of International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine(2022001)Guangxi Traditional Chinese Medicine Multidisciplinary Innovation Team Project(GZKJ2309).
文摘[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.
基金funded by Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/MRC/13/771-4.
文摘Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.
基金supported by the National Natural Science Foundation of China(No.52074246)the National Defense Basic Scientific Research Program of China(No.JCKY2020408B002)+1 种基金the Key R&D Program of Shanxi Province(No.202102050201011)the Shanxi Province Graduate Innovation Project(No.2021Y591).
文摘Casting technology is a fundamental and irreplaceable method in advanced manufacturing.The design and optimization of casting processes are crucial for producing high-performance,complex metal components.Transitioning from traditional process design based on"experience+experiment"to an integrated,intelligent approach is essential for achieving precise control over microstructure and properties.This paper provides a comprehensive and systematic review of intelligent casting process design and optimization for the first time.First,it explores process design methods based on casting simulation and integrated computational materials engineering(ICME).It then examines the application of machine learning(ML)in process design,highlighting its efficiency and existing challenges,along with the development of integrated intelligent design platforms.Finally,future research directions are discussed to drive further advancements and sustainable development in intelligent casting design and optimization.
基金Supported by Major Special Projects of Public Bidding in Shanxi Province of China(Grant No.20201101020)Central Guidance on Local Science and Technology Development Fund Project of China(Grant No.YDZJSX2022A053)Open Fund Subjectof National Key Laboratory of Material Forming and Mold Technology of China(Grant No.P2024-002)。
文摘The forming quality of metal bipolar plate(BPP)flow channels in proton exchange membrane fuel cells(PEMFCs)is a key factor affecting battery performance.A flow channel with straight sidewalls and a low thinning rate can enhance battery output.Roll forming,as a new technology for BPP production,offers advantages such as a low thinning rate and high efficiency.However,existing roll curve design methods struggle to accommodate both low thinning rates and straight sidewall angles simultaneously.This study aims to develop flow channels with right-angled sidewalls,which provide benefits such as a low thinning rate,reduced residual stress,and high accuracy.A roller tooth profile was designed to achieve a flow channel with right-angled sidewalls and minimal thinning.Simulations and experiments were conducted to validate the feasibility of this novel design method for the roll forming process.The study investigated the effects of roller tooth parameters on sidewall angle,thinning rate,and residual stress.A multifactor evaluation method was developed to optimize the tip fillet radius and the tooth profile backlash of the roller.The results indicated that the tip fillet radius and the tooth profile backlash were negatively correlated with the sidewall angle.As the tip fillet radius and tooth profile backlash increased,the thinning rate and residual stress decreased.With a tip fillet radius of 0.25 mm and a tooth profile backlash of 0.19 mm,the flow channel achieved an approximately right-angled sidewall,a maximum thinning rate of 7.7%,a 29.6%reduction in maximum residual stress,and maximum and average residual stress imbalance values of 7.1%and 3.2%,respectively.This study proposes a new design method for a right-angled sidewall runner roller gear profile,facilitating the roll forming of metal BPPs with right-angled sidewalls and minimal thinning.This method provides theoretical support for the large-scale application of roll forming in the manufacture of PEMFC BPPs.
文摘This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences.
文摘This paper focuses on the design of fixtures for NP2 and NP4 cylinder heads on a horizontal machining center of flexible machining automatic lines.It began with an analysis of the diagrams of part processing and working procedure which formed the basis for the design of the processing technology scheme,a selection of suitable machine tools,and the setting of processing parameters.Fixtures tailored to the chosen machine tools were then designed to meet the processing requirements.Additional aspects of the project included the design of part drawings,calculation of working time quota,design of auxiliary guides,support clamping,and hydraulic circuits,all aimed at fulfilling practical production requirements.
基金The National Natural Science Foundation of China(No.71271053)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_082)
文摘Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
文摘The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.
基金This project is supported by Significant Project Foundation of National 863 Program, China.
文摘Based on probability and statistic, a design method of precision cam profileconcerning the influence of random processing errors is advanced. Combining the design with theprocess, which can be used to predict that cam profiles will be successfully processed or not in thedesign stage, design of the cam can be done by balancing the economization and reliability. Inaddition, an fuzzy deduction method based on Bayers formula is advanced to estimate processingreasonable of the designed precision cam profile, and it take few samples.
基金financially supported by the FDCT Project 0029/2018/A1the University of Macao Research Grants(MYRG2019-00041-ICMS)performed in part at the High-Performance Computing Cluster(HPCC)which is supported by Information and Communication Technology Office(ICTO)of the University of Macao。
文摘Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.
文摘As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.
文摘Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.
基金The study was financially supported by the key project of Science and Technology Commission of Shanghai Local Gov-ernment (No. 015211010), the National Natural Science Foundation of China (No. 50171038) and the China-Belgium bi-lateral project (No. 2001-242).
文摘Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.
文摘Constrained groove pressing(CGP)is a severe plastic deformation(SPD)technique used as a strengthening method for sheet metal.In the current work,an optimal/cost-saving design for CGP dies was attained using the stress analysis tool in SolidWorks Simulation Xpress wizard.This study examined low-cost and widely industrially applied aluminium materials,i.e.,pure 1050 Al and 5052 Al alloy.Each material was subjected to three passes of the CGP process using a 150 tons capacity press.For both materials,inter-pass annealing treatment was undertaken before the third pass.The effect of the number of CGP passes on the microstructure and tensile properties was studied after each pass.For CGPed pure 1050 Al with respect to the as-received material,the ultimate tensile strength(UTS),yield strength(YS)and YS/UTS ratio increased with an increasing number of CGP passes until the second pass,while elongation decreased with the number of passes.For CGPed 5052 Al alloy,the UTS and YS increased after the first pass and then decreased after the second pass.Variations in the elongation and YS/UTS ratio of 5052 Al alloy after the CGP process were insignificant.After inter-pass annealing and applying the third CGP pass,the strength of pure 1050 Al decreased,and that of 5052 Al alloy increased,which was attributed to the influence of composition on their structures.The strength-ductility balance decreased with an increasing number of CGP passes in both materials.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. AA420060)
文摘In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.