Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced...Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.展开更多
Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue feat...Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties.展开更多
Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in ...Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM.展开更多
Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when impl...Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when implementing ML in industry.However,there is no systematic investigation on how data quality can be assessed and improved for ML-based design and manufacturing.The aim of this survey is to uncover the data challenges in this domain and review the techniques used to resolve them.To establish the background for the subsequent analysis,crucial data terminologies in ML-based modeling are reviewed and categorized into data acquisition,management,analysis,and utilization.Thereafter,the concepts and frameworks established to evaluate data quality and imbalance,including data quality assessment,data readiness,information quality,data biases,fairness,and diversity,are further investigated.The root causes and types of data challenges,including human factors,complex systems,complicated relationships,lack of data quality,data heterogeneity,data imbalance,and data scarcity,are identified and summarized.Methods to improve data quality and mitigate data imbalance and their applications in this domain are reviewed.This literature review focuses on two promising methods:data augmentation and active learning.The strengths,limitations,and applicability of the surveyed techniques are illustrated.The trends of data augmentation and active learning are discussed with respect to their applications,data types,and approaches.Based on this discussion,future directions for data quality improvement and data imbalance mitigation in this domain are identified.展开更多
Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nic...Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.展开更多
As a product of the new century,artificial intelligence has been continuously developed and advanced.It has been applied to many fields,especially in the field of mechanical design and manufacturing.With the support o...As a product of the new century,artificial intelligence has been continuously developed and advanced.It has been applied to many fields,especially in the field of mechanical design and manufacturing.With the support of artificial intelligence,mechanical design and manufacturing can not only reduce input costs but also significantly reduce the demand for labor,playing a positive role in improving the design efficiency and quality of mechanical manufacturing[1].This paper studies how to apply artificial intelligence technology to the mechanical design and production process to achieve greater application and development.展开更多
As a follow-up to the successful International Conference on Biomaterials,Bio-Design and Manufacturing(BDMC)held at the National University of Singapore in 2023[1]and at the University of Tokyo in 2024[2],BDMC2025 too...As a follow-up to the successful International Conference on Biomaterials,Bio-Design and Manufacturing(BDMC)held at the National University of Singapore in 2023[1]and at the University of Tokyo in 2024[2],BDMC2025 took place at the University of Oxford in the UK from August 8th to August 10th this year.After the meeting,a participant from the University of Cambridge described his experience of attending BDMC2025 on the social media platform LinkedIn in the following terms:“Many thanks to the organizers for a fantastic event bringing together nearly everyone at the interface of Biofabrication,Materials Science,and Biomedical Engineering”[3].The conference was held on the campus of the University of Oxford and 190 researchers from 55 academic institutions across 10 countries and regions attended(Fig.1).展开更多
Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding signific...Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction.展开更多
Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle...Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.展开更多
Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applicati...Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.展开更多
Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and ...Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,展开更多
The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures...The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.展开更多
Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided ...Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].展开更多
The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtaine...The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.展开更多
In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expresse...In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.展开更多
Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) kn...Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.展开更多
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While...Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.展开更多
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate vario...Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.展开更多
Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key techno...Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.展开更多
Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially...Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.展开更多
基金The study was financially supported by the key project of Science and Technology Commission of Shanghai Local Gov-ernment (No. 015211010), the National Natural Science Foundation of China (No. 50171038) and the China-Belgium bi-lateral project (No. 2001-242).
文摘Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.
文摘Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties.
基金supported by the Advanced Research and Technology Innovation Centre (ARTIC)the National University of Singapore under Grant (Project Number:ADTRP1)the sponsorship of the China Scholarship Council (No. 202306130143).
文摘Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM.
基金funded by the McGill University Graduate Excellence Fellowship Award(00157)the Mitacs Accelerate Program(IT13369)the McGill Engineering Doctoral Award(MEDA).
文摘Machine learning(ML)has recently enabled many modeling tasks in design,manufacturing,and condition monitoring due to its unparalleled learning ability using existing data.Data have become the limiting factor when implementing ML in industry.However,there is no systematic investigation on how data quality can be assessed and improved for ML-based design and manufacturing.The aim of this survey is to uncover the data challenges in this domain and review the techniques used to resolve them.To establish the background for the subsequent analysis,crucial data terminologies in ML-based modeling are reviewed and categorized into data acquisition,management,analysis,and utilization.Thereafter,the concepts and frameworks established to evaluate data quality and imbalance,including data quality assessment,data readiness,information quality,data biases,fairness,and diversity,are further investigated.The root causes and types of data challenges,including human factors,complex systems,complicated relationships,lack of data quality,data heterogeneity,data imbalance,and data scarcity,are identified and summarized.Methods to improve data quality and mitigate data imbalance and their applications in this domain are reviewed.This literature review focuses on two promising methods:data augmentation and active learning.The strengths,limitations,and applicability of the surveyed techniques are illustrated.The trends of data augmentation and active learning are discussed with respect to their applications,data types,and approaches.Based on this discussion,future directions for data quality improvement and data imbalance mitigation in this domain are identified.
基金financially supported by the National Key R&D Program of China(No.2021YFB3702301)the National Natural Science Foundation of China(No.52101068]+2 种基金the China Postdoctoral Science Foundation[No.2022T150342]the Postdoctoral International Exchange Program[No.YJ20210129]the Shuimu Tsinghua Scholar Program(No.2020SM100)
文摘Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.
文摘As a product of the new century,artificial intelligence has been continuously developed and advanced.It has been applied to many fields,especially in the field of mechanical design and manufacturing.With the support of artificial intelligence,mechanical design and manufacturing can not only reduce input costs but also significantly reduce the demand for labor,playing a positive role in improving the design efficiency and quality of mechanical manufacturing[1].This paper studies how to apply artificial intelligence technology to the mechanical design and production process to achieve greater application and development.
文摘As a follow-up to the successful International Conference on Biomaterials,Bio-Design and Manufacturing(BDMC)held at the National University of Singapore in 2023[1]and at the University of Tokyo in 2024[2],BDMC2025 took place at the University of Oxford in the UK from August 8th to August 10th this year.After the meeting,a participant from the University of Cambridge described his experience of attending BDMC2025 on the social media platform LinkedIn in the following terms:“Many thanks to the organizers for a fantastic event bringing together nearly everyone at the interface of Biofabrication,Materials Science,and Biomedical Engineering”[3].The conference was held on the campus of the University of Oxford and 190 researchers from 55 academic institutions across 10 countries and regions attended(Fig.1).
基金supported by the funding provided by Boeing Center for Aviation and Aerospace Safety.
文摘Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction.
基金The National Natural Science Foundation of China(No.71271053)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_082)
文摘Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:51771184,11735015,51801203,51771181)the Natural Science Foundation of Anhui Province(Grant No.1808085QE132)+2 种基金the Open Project of State Key Laboratory of Environment friendly Energy Materials(18kfhg02)a fund from the Science and Technology on Surface Physics and Chemistry Laboratory(Grant No.JZX7Y201901SY00900103)the Innovation Center of Nuclear Materials for National Defense Industry。
文摘Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.
文摘Industry 4.0 as referred to the fourth industrial revolution has endorsed in several national manufacturing initiatives or development plans such as in Germany, the UK, USA and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology,
文摘The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.
文摘Digital design and manufacturing have been around for several decades from the numerical control of machine tools and automating engineering design in 1960s, through early Computer Aided Design (CAD)/Computer Aided Engineering analysis (CAE)/Computer Aided Manufacturing (CAM), to modem digital design and manufacturing [1], and cloud manufacturing [2] converging into product lifecycle management (PLM) [3, 4] and Internet-enabled personalized manufacturing [5].
文摘The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.
基金the National Key Research and Development Program of China(No.2016YFB1100103)the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(No.2020JJ25CY004)。
文摘In this study,α+βTi-Al-V-Mo-Nb alloys with the addition of multiple elements that are suitable for laser additive manufacturing(LAM)were designed according to a Ti-6Al-4V cluster formula.This formula can be expressed as 12[Al-Ti12](AlTi2)+5[Al-Ti14]((Mo,V,Nb)2Ti),in which Mo and Nb were added into the alloys partially instead of V to give alloys with nominal compositions of Ti-6.01Al-3.13V-1.43Nb,Ti-5.97Al-2.33V-2.93Mo,and Ti-5.97Al-2.33V-2.20Mo-0.71Nb(wt.%).The microstructures and mechanical properties of the as-deposited and heat-treated samples prepared via LAM were examined.The sizes of theβcolumnar grains andαlaths in the Nb-containing samples are found to be larger than those of the Ti-6Al-4V alloy,whereas Mo-or Mo/Nb-added alloys contain finer grains.It indicates that Nb gives rise to coarsenedβcolumnar grains andαlaths,while Mo significantly refines them.Furthermore,the single addition of Nb improves the elongation,whereas the single addition of Mo enhances the strength of the alloys.The simultaneous addition of Mo/Nb significantly improves the comprehensive mechanical properties of the alloys,leading to the best properties with an ultimate tensile strength of 1,070 MPa,a yield strength of 1,004 MPa,an elongation of 9%,and micro-hardness of 355 HV.The fracture modes of all the alloys are ductile-brittle mixed fracture.
基金Supported by National Science and Technology Council(CONACYT)of Mexico(Grant No.CB-2010-01-154430)PROMEP Program of the Public Education Secretariat(SEP)of MexicoFund for Research Support(FAI)of UASLP
文摘Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)project supported by the Space Utilization System of China Manned Space Engineering(KJZ-YY-WCL03)+6 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902210109)National Key Research and Development Program of China(2018YFB0905600 and 2017YFB0310400)National Natural Science Foundation of China(51472188 and 51521001)Natural Research Funds of Hubei Province(2016CFB583)Natural Research Funds of Shenzhen,Fundamental Research Funds for the Central Universities China,State Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology)the Science and Technology Project of the Global Energy Interconnection Research Institute Co.,Ltd.(SGGR0000WLJS1801080)the 111 Project(B13035)。
文摘Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials.
基金financially supported by the FDCT Project 0029/2018/A1the University of Macao Research Grants(MYRG2019-00041-ICMS)performed in part at the High-Performance Computing Cluster(HPCC)which is supported by Information and Communication Technology Office(ICTO)of the University of Macao。
文摘Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.
基金Funded by the Natural Science Foundation of Hubei province(2005ABB023)Wuhan city dawn plan(20055003059)
文摘Based on the analysis on the previous research in virtual manufacturing and virtual enterprises,this paper pro- vides a novel architecture of networked manufacturing system around the cooperative design.The key technologies for synchronous cooperative design in networked manufacturing platform,such as the cooperative mechanism,cooperative rules,control authority conveyed,cooperative efficiency,are detailed,with which a synchronous cooperative design system is developed.Due to the cooper- ative efficiency is the major bottleneck of the synchronous cooperative design over Internet,this research details the test and experi- ment to demonstrate the practicality of the system.Finally the advantages of the system are illustrated compared with current soft- ware tools.
文摘Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.