This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilit...This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilities among electrical engineering majors,based on the independently developed virtual simulation experimental teaching platform for Electric Machine and Drive,a stepped practical teaching process consisting of“classroom teaching-experimental teaching-comprehensive training-scientific inquiry”has been elaborately designed.A hierarchical practical teaching model for the second classroom has also been established.With teaching objectives as the optimization index,the teaching content,methods and means have been optimized;the teaching process has been organized and implemented in the form of team collaboration,thus constructing a comprehensive,stepped,hierarchical,and closed-loop innovative practical teaching system.This achievement provides references and assistance for the practical teaching of the same or similar majors in other colleges and universities.展开更多
With the development of manufacturing,numerical control(NC) machining simulation has become a modern tool to obtain safe and reliable machining operations.Although some research and commercial software about NC machin...With the development of manufacturing,numerical control(NC) machining simulation has become a modern tool to obtain safe and reliable machining operations.Although some research and commercial software about NC machining simulations is available,most of them is oriented for G&M code.It is a low-level data model for computer numerical control(CNC),which has inherent drawbacks such as incomplete data and lack of accuracy.These limitations hinder the development of a real simulation system.Whereas,standard for the exchange of product data-compliant numerical control(STEP-NC) is a new and high-level data model for CNC.It provides rich information for CNC machine tools,which creates the condition for an informative and real simulation.Therefore,this paper proposes STEP-NC based high-level NC machining simulations solution integrated with computer-aided design/computeraided process planning/computer-aided manufacturing(CAD/CAPP/CAM).It turned out that the research provides a better informed simulation environment and promotes the development of modern manufacturing.展开更多
A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The N...A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF function F was calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.展开更多
A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two dimensional and thre...A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two dimensional and three-dimensional numerical simulation is carried out to determine the three-dimensional effect. The results of numerical simulation agree quite well with the wave forces acting on pipeline models measured in physical model test.展开更多
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fract...For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.展开更多
Reducing the power and energy required by the device/circuit to operate is the main aim of this paper. Here the new design is implemented to reduce the power consumption of the device using the triggering pulses. The ...Reducing the power and energy required by the device/circuit to operate is the main aim of this paper. Here the new design is implemented to reduce the power consumption of the device using the triggering pulses. The proposed triggering method uses a complementary MOS transistor (pMOS and nMOS) as a voltage divider and ground leakage suppressor (i.e.);these designs are named as Trig01 and Trig10 designs. In Trig01 design the pair of CMOS is placed in the voltage divider part;similarly in Trig10 design the pair of CMOS is placed at the ground leakage suppressor part. Standard CMOS gates like NOT, NAND, NOR, EX-OR etc. are designed with these technologies and these gates are designed with 180 nm technology file in the cadence tool suite;compared to the normal CMOS gates, the Bi-Trig gate contains 4 inputs and 2 outputs. The two extra inputs are used as Bi-Trig control signaling inputs. There are 2 control inputs and thus 2<sup>2</sup> = 4 combination of controlling is done (i.e.);both pMOS and nMOS are ON, both pMOS and nMOS are OFF, pMOS ON and nMOS OFF and pMOS ON and nMOS ON. Depending on the usage of the circuit, the mode of operation is switched to any one of the combination. If the output of the circuit is not used anywhere in the total block, that specified circuit can be switched into idle mode by means of switched OFF both the pMOS and nMOS transistor in the control unit. This reduces the leakage current and also the power wastage of the circuits in the total block. Bi-Trig controlled circuit reduces the power consumption and leakage power of the circuit without affecting a performance of the circuits.展开更多
基金Project of the 14th Five-Year Plan for Educational Science in Liaoning Province(JG24DB234)Project of Graduate Education and Teaching Reform Research in Liaoning Province(LNYJG2023115)。
文摘This paper introduces the experience and practice in constructing the practical teaching system for the course“Electric Machine and Drive.”In response to the current status of cultivating innovative practical abilities among electrical engineering majors,based on the independently developed virtual simulation experimental teaching platform for Electric Machine and Drive,a stepped practical teaching process consisting of“classroom teaching-experimental teaching-comprehensive training-scientific inquiry”has been elaborately designed.A hierarchical practical teaching model for the second classroom has also been established.With teaching objectives as the optimization index,the teaching content,methods and means have been optimized;the teaching process has been organized and implemented in the form of team collaboration,thus constructing a comprehensive,stepped,hierarchical,and closed-loop innovative practical teaching system.This achievement provides references and assistance for the practical teaching of the same or similar majors in other colleges and universities.
基金supported by National Natural Science Foundation of China (No.51205054)National Key Technology Research and Development Program During the Twelfth Five-year Plan(Nos.2012BAF10B11,2012BAF12B08)
文摘With the development of manufacturing,numerical control(NC) machining simulation has become a modern tool to obtain safe and reliable machining operations.Although some research and commercial software about NC machining simulations is available,most of them is oriented for G&M code.It is a low-level data model for computer numerical control(CNC),which has inherent drawbacks such as incomplete data and lack of accuracy.These limitations hinder the development of a real simulation system.Whereas,standard for the exchange of product data-compliant numerical control(STEP-NC) is a new and high-level data model for CNC.It provides rich information for CNC machine tools,which creates the condition for an informative and real simulation.Therefore,this paper proposes STEP-NC based high-level NC machining simulations solution integrated with computer-aided design/computeraided process planning/computer-aided manufacturing(CAD/CAPP/CAM).It turned out that the research provides a better informed simulation environment and promotes the development of modern manufacturing.
基金supported by the National Natural Science Foundation of China (Grant No. 50679008)
文摘A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF function F was calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.
基金Part of results of a project financially supported by the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology
文摘A three-step finite element method (FEM) together with Large Eddy Simulation (LES) is applied to incompressible turbulent flow around seabed pipelines at relatively high Reynolds numbers. Both two dimensional and three-dimensional numerical simulation is carried out to determine the three-dimensional effect. The results of numerical simulation agree quite well with the wave forces acting on pipeline models measured in physical model test.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052, 10271066)the Doctoral Foundation of Ministry of Education of China (No.20030422047).
文摘For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.
文摘Reducing the power and energy required by the device/circuit to operate is the main aim of this paper. Here the new design is implemented to reduce the power consumption of the device using the triggering pulses. The proposed triggering method uses a complementary MOS transistor (pMOS and nMOS) as a voltage divider and ground leakage suppressor (i.e.);these designs are named as Trig01 and Trig10 designs. In Trig01 design the pair of CMOS is placed in the voltage divider part;similarly in Trig10 design the pair of CMOS is placed at the ground leakage suppressor part. Standard CMOS gates like NOT, NAND, NOR, EX-OR etc. are designed with these technologies and these gates are designed with 180 nm technology file in the cadence tool suite;compared to the normal CMOS gates, the Bi-Trig gate contains 4 inputs and 2 outputs. The two extra inputs are used as Bi-Trig control signaling inputs. There are 2 control inputs and thus 2<sup>2</sup> = 4 combination of controlling is done (i.e.);both pMOS and nMOS are ON, both pMOS and nMOS are OFF, pMOS ON and nMOS OFF and pMOS ON and nMOS ON. Depending on the usage of the circuit, the mode of operation is switched to any one of the combination. If the output of the circuit is not used anywhere in the total block, that specified circuit can be switched into idle mode by means of switched OFF both the pMOS and nMOS transistor in the control unit. This reduces the leakage current and also the power wastage of the circuits in the total block. Bi-Trig controlled circuit reduces the power consumption and leakage power of the circuit without affecting a performance of the circuits.