期刊文献+
共找到491篇文章
< 1 2 25 >
每页显示 20 50 100
Data-driven assessment of lithium-ion battery degradation using thermal patterns from computer vision
1
作者 Zihan Li Haiyan Tu +4 位作者 Hailong Wang Linyu Hu Shunpeng Chen Ruiting Yan Xin He 《Journal of Energy Chemistry》 2025年第6期852-859,I0017,共9页
Accurate estimation on the state of health(SOH)is essential for ensuring the safe and reliable operation of batteries.Traditional assessment methods primarily focus on electrical attributes for capacity decay,often ov... Accurate estimation on the state of health(SOH)is essential for ensuring the safe and reliable operation of batteries.Traditional assessment methods primarily focus on electrical attributes for capacity decay,often overlooking the impact of thermal distribution on battery aging.However,thermal effect is a critical factor for degradation process and associated risks throughout their service life.In this paper,we introduce a novel deep learning framework specially designed to estimate the capacity and thermal risks of lithium-ion batteries(LIBs).This model consists of two main components that leverage computer vision technology.One predicts battery capacity by integrating the advantages of thermal and electrical features using a temporal pattern attention(TPA)mechanism,while the other assesses thermal risk by incorporating temperature variation to provide early warnings of potential hazards.An infrared camera is deployed to record temperature evolution of LIBs during the electrochemical process.The thermal heterogeneities are recorded by infrared camera,and the corresponding temperature evolutions are extracted as representative features for analysis.The proposed model demonstrates high accuracy and stability,with an average root mean square error(RMSE)of 0.67% for capacity estimation and accuracy exceeding 93.9% for risk prediction,underscoring the importance of integrating spatial temperature distribution into battery health assessments.This work offers valuable insights for the development of intelligent and robust battery management systems. 展开更多
关键词 Temperature distribution Deep learning Capacity estimation Temporal pattern attention mechanism computer vision
在线阅读 下载PDF
Geometric parameter identification of bridge precast box girder sections based on deep learning and computer vision
2
作者 JIA Jingwei NI Youhao +2 位作者 MAO Jianxiao XU Yinfei WANG Hao 《Journal of Southeast University(English Edition)》 2025年第3期278-285,共8页
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve... To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%. 展开更多
关键词 bridge precast components section geometry parameters size identification computer vision deep learning
在线阅读 下载PDF
A Survey of Adversarial Examples in Computer Vision:Attack,Defense,and Beyond
3
作者 XU Keyizhi LU Yajuan +1 位作者 WANG Zhongyuan LIANG Chao 《Wuhan University Journal of Natural Sciences》 2025年第1期1-20,共20页
Recent years have witnessed the ever-increasing performance of Deep Neural Networks(DNNs)in computer vision tasks.However,researchers have identified a potential vulnerability:carefully crafted adversarial examples ca... Recent years have witnessed the ever-increasing performance of Deep Neural Networks(DNNs)in computer vision tasks.However,researchers have identified a potential vulnerability:carefully crafted adversarial examples can easily mislead DNNs into incorrect behavior via the injection of imperceptible modification to the input data.In this survey,we focus on(1)adversarial attack algorithms to generate adversarial examples,(2)adversarial defense techniques to secure DNNs against adversarial examples,and(3)important problems in the realm of adversarial examples beyond attack and defense,including the theoretical explanations,trade-off issues and benign attacks in adversarial examples.Additionally,we draw a brief comparison between recently published surveys on adversarial examples,and identify the future directions for the research of adversarial examples,such as the generalization of methods and the understanding of transferability,that might be solutions to the open problems in this field. 展开更多
关键词 computer vision adversarial examples adversarial attack adversarial defense
原文传递
Enhancing Military Visual Communication in Harsh Environments Using Computer Vision Techniques
4
作者 Shitharth Selvarajan Hariprasath Manoharan +2 位作者 Taher Al-Shehari Nasser A Alsadhan Subhav Singh 《Computers, Materials & Continua》 2025年第8期3541-3557,共17页
This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the... This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the photographs by reducing truncations in the existing images.Furthermore,the collected images undergo processing using histogram gradients and a flexible threshold value that may be adjusted in specific situations.Thus,it is possible to reduce the occurrence of overlapping circumstances in collective picture characteristics by substituting grey-scale photos with colorized factors.The proposed method offers additional robust feature representations by imposing a limiting factor to reduce overall scattering values.This is achieved by visualizing a graphical function.Moreover,to derive valuable insights from a series of photos,both the separation and in-version processes are conducted.This involves analyzing comparison results across four different scenarios.The results of the comparative analysis show that the proposed method effectively reduces the difficulties associated with time and space to 1 s and 3%,respectively.In contrast,the existing strategy exhibits higher complexities of 3 s and 9.1%,respectively. 展开更多
关键词 Image enhancement visual information harsh environment computer vision
在线阅读 下载PDF
Early Detection of Colletotrichum Kahawae Disease in Coffee Cherry Based on Computer Vision Techniques
5
作者 Raveena Selvanarayanan Surendran Rajendran Youseef Alotaibi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期759-782,共24页
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease ... Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%. 展开更多
关键词 computer vision coffee berry disease colletotrichum kahawae XG boost shapley additive explanations
在线阅读 下载PDF
A Novel 6G Scalable Blockchain Clustering-Based Computer Vision Character Detection for Mobile Images
6
作者 Yuejie Li Shijun Li 《Computers, Materials & Continua》 SCIE EI 2024年第3期3041-3070,共30页
6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is... 6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques. 展开更多
关键词 6G technology blockchain end-to-end recognition Chinese characters natural scene computer vision algorithms convolutional neural network
在线阅读 下载PDF
A Systematic Review of Computer Vision Techniques for Quality Control in End-of-Line Visual Inspection of Antenna Parts
7
作者 Zia Ullah Lin Qi +2 位作者 E.J.Solteiro Pires Arsénio Reis Ricardo Rodrigues Nunes 《Computers, Materials & Continua》 SCIE EI 2024年第8期2387-2421,共35页
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear... The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration. 展开更多
关键词 computer vision end-of-line visual inspection of antenna parts machine learning algorithms image processing techniques deep learning models
在线阅读 下载PDF
An automatic workflow for the quantitative evaluation of bit wear based on computer vision
8
作者 Dong-Han Yang Xian-Zhi Song +3 位作者 Zhao-Peng Zhu Tao Pan Long Tian Lin Zhu 《Petroleum Science》 CSCD 2024年第6期4376-4390,共15页
As global oil exploration ventures into deeper and more complex territories,drilling bit wear and damage have emerged as significant constraints on drilling efficiency and safety.Despite the publication of official bi... As global oil exploration ventures into deeper and more complex territories,drilling bit wear and damage have emerged as significant constraints on drilling efficiency and safety.Despite the publication of official bit wear evaluation standards by the International Association of Drill Contractors(IADC),the current lack of quantitative and scientific evaluation techniques means that bit wear assessments rely heavily on engineers'experience.Consequently,forming a standardized database of drilling bit information to underpin the mechanisms of bit wear and facilitate optimal design remains challenging.Therefore,an efficient and quantitative evaluation of bit wear is crucial for optimizing bit performance and improving penetration efficiency.This paper introduces an automatic standard workflow for the quantitative evaluation of bit wear and the design of a comprehensive bit information database.Initially,a method for acquiring images of worn bits at the drilling site was developed.Subsequently,the wear classification and grading models based on computer vision were established to determine bit status.The wear classification model focuses on the positioning and classification of bit cutters,while the wear grading model quantifies the extent of bit wear.After that,the automatic evaluation method of the bit wear is realized.Additionally,bit wear evaluation software was designed,integrating all necessary functions to assess bit wear in accordance with IADC standards.Finally,a drilling bit database was created by integrating bit wear data,logging data,mud-logging data,and basic drilling bit data.This workflow represents a novel approach to collecting and analyzing drilling bit information at drilling sites.It holds potential to facilitate the creation of a large-scale information database for the entire lifecycle of drilling bits,marking the inception of intelligent analysis,design,and manufacture of drilling bits,thereby enhancing performance in challenging drilling conditions. 展开更多
关键词 Bit wear evaluation computer vision Drillingbit information database
原文传递
Clinical Application of Preliminary Breast Cancer Screening for Dense Breasts Using Real-Time AI-Powered Ultrasound with Deep-Learning Computer Vision
9
作者 Zhenzhong Zhou Xueqin Xie +3 位作者 Zongjin Yang Zhongxiong Feng Xiaoling Zheng Qian Huang 《Journal of Clinical and Nursing Research》 2024年第6期36-47,共12页
Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound vide... Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound video feed,provides BI-RADS categorizations;and has reliable sensitivity and specificity.Multiple deep-learning models were trained on more than 300,000 breast ultrasound images to achieve object detection and regions of interest classification.The main objective of this study was to determine whether the performance of our Al-powered solution was comparable to that of ultrasound radiologists.Methods:The noninferiority evaluation was conducted by comparing the examination results of the same screening women between our AI-powered solution and ultrasound radiologists with over 10 years of experience.The study lasted for one and a half years and was carried out in the Duanzhou District Women and Children's Hospital,Zhaoqing,China.1,133 females between 20 and 70 years old were selected through convenience sampling.Results:The accuracy,sensitivity,specificity,positive predictive value,and negative predictive value were 93.03%,94.90%,90.71%,92.68%,and 93.48%,respectively.The area under the curve(AUC)for all positives was 0.91569 and the AUC for all negatives was 0.90461.The comparison indicated that the overall performance of the AI system was comparable to that of ultrasound radiologists.Conclusion:This innovative AI-powered ultrasound solution is cost-effective and user-friendly,and could be applied to massive breast cancer screening. 展开更多
关键词 Breast cancer screening ULTRASOUND Lesion detection BI-RADS Deep learning computer vision Cloud computing
暂未订购
Computer Vision-Based Human Body Posture Correction System
10
作者 Yangsen QIU Yukun WANG +2 位作者 Yuchen WU Xinyi QIANG Yunzuo ZHANG 《Mechanical Engineering Science》 2024年第1期1-7,共7页
With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged s... With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged sitting and often neglecting the importance of posture,incorrect posture can often lead to health problems such as hunchback,lumbar muscle strain,and shoulder and neck pain over time.To address this issue,we designed a computer vision-based human body posture detection system.The system utilizes YOLOv8 technology to accurately locate key points of the human body skeleton,and then analyzes the coordinate positions and depth information of these key points to establish a criterion for distinguishing different postures.With the assistance of an SVM classifier,the system achieves an average recognition rate of 95%.Finally,we successfully deployed the posture detection system on Raspberry Pi hardware and conducted extensive testing.The test results demonstrate that the system can effectively detect various postures and provide real-time reminders to users to correct poor posture,demonstrating good practicality and stability. 展开更多
关键词 computer vision human posture deep learning image processing
在线阅读 下载PDF
Computer vision technology in log volume inspection 被引量:3
11
作者 汪亚明 黄文清 赵匀 《Journal of Forestry Research》 SCIE CAS CSCD 2002年第1期67-70,84,共4页
Log volume inspection is very important in forestry research and paper making engineering. This paper proposed a novel approach based on computer vision technology to cope with log volume inspection. The needed hardwa... Log volume inspection is very important in forestry research and paper making engineering. This paper proposed a novel approach based on computer vision technology to cope with log volume inspection. The needed hardware system was analyzed and the details of the inspection algorithms were given. A fuzzy entropy based on image enhancement algorithm was presented for enhancing the image of the cross-section of log. In many practical applications the cross-section is often partially invisible, and this is the major obstacle for correct inspection. To solve this problem, a robust Hausdorff distance method was proposed to recover the whole cross-section. Experiment results showed that this method was efficient. 展开更多
关键词 Log volume Automatic inspection computer vision Fuzzy entropy Hausdorff distance
在线阅读 下载PDF
Review on the proceeding of automatic seedlings classification by computer vision 被引量:1
12
作者 杨延竹 赵学增 +1 位作者 王伟杰 吴羡 《Journal of Forestry Research》 SCIE CAS CSCD 2002年第3期245-249,252,共5页
The classification of seedlings is important to ensure the viability of seedlings after transplantation and is acknowledged as a key factor in forestation and environmental improvement. Based on numerous papers on aut... The classification of seedlings is important to ensure the viability of seedlings after transplantation and is acknowledged as a key factor in forestation and environmental improvement. Based on numerous papers on automatic seedling classification (ASC), the seedling grading theory, traditional grading methods, the background and the proceeding of ASC techniques are described. The automation of the measurement of seedling morphological characteristics by photoelectric meters and computer vision is studied, and the automatic methods of the current grading systems are described respectively. And the further researches on ASC by computer vision are proposed. 展开更多
关键词 Seedlings classification AUTOMATION Morphological characteristic computer vision
在线阅读 下载PDF
Application of Computer Vision Technique to Maize Variety Identification 被引量:1
13
作者 孙钟雷 李宇 何伟 《Agricultural Science & Technology》 CAS 2013年第5期783-786,796,共5页
Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been su... Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted. 展开更多
关键词 Maize variety identification computer vision Image processing Feature extraction Pattern recognition
在线阅读 下载PDF
Application of Computer Vision Technology in Agriculture 被引量:6
14
作者 黄喜梅 毕建杰 +3 位作者 张楠 丁筱玲 李飞 侯发东 《Agricultural Science & Technology》 CAS 2017年第11期2158-2162,共5页
With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-resea... With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-research progress on diagnosis of agricultural products, water diagnosis, weed identification,product quality testing and grading, agricultural picking and sorting and other as- pects, and finally put forward its existing problems and prospects for the future. 展开更多
关键词 Image processing computer vision technology Agriculture production PROSPECT
在线阅读 下载PDF
A review of the research and application of deep learning-based computer vision in structural damage detection 被引量:10
15
作者 Zhang Lingxin Shen Junkai Zhu Baijie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期1-21,共21页
Damage detection is a key procedure in maintenance throughout structures′life cycles and post-disaster loss assessment.Due to the complex types of structural damages and the low efficiency and safety of manual detect... Damage detection is a key procedure in maintenance throughout structures′life cycles and post-disaster loss assessment.Due to the complex types of structural damages and the low efficiency and safety of manual detection,detecting damages with high efficiency and accuracy is the most popular research direction in civil engineering.Computer vision(CV)technology and deep learning(DL)algorithms are considered as promising tools to address the aforementioned challenges.The paper aims to systematically summarized the research and applications of DL-based CV technology in the field of damage detection in recent years.The basic concepts of DL-based CV technology are introduced first.The implementation steps of creating a damage detection dataset and some typical datasets are reviewed.CV-based structural damage detection algorithms are divided into three categories,namely,image classification-based(IC-based)algorithms,object detection-based(OD-based)algorithms,and semantic segmentation-based(SS-based)algorithms.Finally,the problems to be solved and future research directions are discussed.The foundation for promoting the deep integration of DL-based CV technology in structural damage detection and structural seismic damage identification has been laid. 展开更多
关键词 deep learning damage detection computer vision loss assessment
在线阅读 下载PDF
Behavioral response of tilapia (Oreochromis niloticus) to acute ammonia stress monitored by computer vision 被引量:7
16
作者 徐建瑜 苗香雯 +1 位作者 刘鹰 崔绍荣 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第8期812-816,共5页
The behavioral responses of a tilapia (Oreochromis niloticus) school to low (0.13 mg/L), moderate (0.79 mg/L) and high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were monitored using a computer vision... The behavioral responses of a tilapia (Oreochromis niloticus) school to low (0.13 mg/L), moderate (0.79 mg/L) and high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were monitored using a computer vision system. The swimming activity and geometrical parameters such as location of the gravity center and distribution of the fish school were calculated continuously. These behavioral parameters of tilapia school responded sensitively to moderate and high UIA concen-tration. Under high UIA concentration the fish activity showed a significant increase (P<0.05), exhibiting an avoidance reaction to high ammonia condition, and then decreased gradually. Under moderate and high UIA concentration the school’s vertical location had significantly large fluctuation (P<0.05) with the school moving up to the water surface then down to the bottom of the aquarium alternately and tending to crowd together. After several hours’ exposure to high UIA level, the school finally stayed at the aquarium bottom. These observations indicate that alterations in fish behavior under acute stress can provide important in-formation useful in predicting the stress. 展开更多
关键词 Ammonia stress TILAPIA computer vision AQUACULTURE
在线阅读 下载PDF
DESIGN OF A NEW TYPE OF AGV BASED ON COMPUTER VISION 被引量:6
17
作者 JiShouwen LiKeqiang +2 位作者 MiaoLixin WangRongben GuoKeyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期97-101,共5页
The structure, function and working principle of JLUIV-3, which is a new typeof auto-mated guided vehicle (AGV) with computer vision, is described. The white stripe line withcertain width is used as inductive mark for... The structure, function and working principle of JLUIV-3, which is a new typeof auto-mated guided vehicle (AGV) with computer vision, is described. The white stripe line withcertain width is used as inductive mark for JLUIV-3 automated navigation. JULIV-3 can automaticallyrecognize the Arabic numeral codes which mark the multi-branch paths and multi-operation buffers,and autonomously select the correct path for destination. Compared with the traditional AGV, it hasmuch more navigation flexibility and less cost, and provides higher-level intelligence. Theidentification method of navigation path by using neural network and the optimal control method ofthe AGV are introduced in detail. 展开更多
关键词 AGV computer vision Optimum control Path identification LOGISTICS
在线阅读 下载PDF
Knowledge Graph for Identifying Geological Disasters by Integrating Computer Vision with Ontology 被引量:5
18
作者 Qinjun Qiu Zhong Xie +5 位作者 Die Zhang Kai Ma Liufeng Tao Yongjian Tan Zhipeng Zhang Baode Jiang 《Journal of Earth Science》 SCIE CAS CSCD 2023年第5期1418-1432,共15页
The occurrence of geological disasters can have a large impact on urban safety. Protecting people’s safety is the most important concern when disasters occur. Safety improvement requires a large amount of comprehensi... The occurrence of geological disasters can have a large impact on urban safety. Protecting people’s safety is the most important concern when disasters occur. Safety improvement requires a large amount of comprehensive and representative risk analysis and a large collection of information related to geological hazards, including unstructured knowledge and experience. To address the relevant information and support safety risk analysis, a geological hazard knowledge graph is developed automatically based on computer vision and domain-geoscience ontology to identify geological hazards from input images while obeying safety rules and regulations, even when affected by changes. In the implementation of the knowledge graph, we design an ontology schema of geological disasters based on a top-down approach, and by organizing knowledge as a logical semantic expression, it can be shared using ontology technologies and therefore enable semantic interoperability. Computer vision approaches are then used to automatically detect a set of entities and attributes, using the data from input images, and object types and their attributes are identified so that they can be stored in Neo4j for reasoning and searching. Finally, a reasoning model for geological hazard identification was developed using the Neo4j database to create nodes, relationships, and their properties for modeling, and geological hazards in the images can be automatically identified by searching the Neo4j database. An application on geological hazard is presented. The results show the effectiveness of the proposed approach in terms of identifying possible potential hazards in geological hazards and assisting in formulating targeted preventive measures. 展开更多
关键词 geological hazard computer vision knowledge graph city safety ONTOLOGY
原文传递
A review of the application of computer vision technology in aquaculture 被引量:5
19
作者 CUl Zhen WU Jun-feng +3 位作者 YU Hong DONG Wan-ting LU Xiao-li CHENG Ming 《Marine Science Bulletin》 CAS 2018年第1期53-66,共14页
In recent years, aquaculture industry in China is developing rapidly, and especially, China has the largest aquaculture area and the most output in the world. In the past, traditional aquaculture mainly depended on ma... In recent years, aquaculture industry in China is developing rapidly, and especially, China has the largest aquaculture area and the most output in the world. In the past, traditional aquaculture mainly depended on manual labour to breed and gain aquatic organisms. However, with the increasing scale of production and the continuous improvement of science and technology, the traditional aquaculture approach has become more and more unsuitable for the development of the times. With the rapid development of computer technology, computer vision technology infiltrates through the traditional aquaculture industry quickly and improves the aquaculture production efficiency .This paper mainly introduces the basic situation of computer vision technology and summarizes the application of computer vision technology in aquaculture industry at home and abroad. The paper concludes with the expectation of application of computer vision in the aquaculture. 展开更多
关键词 computer vision AQUACULTURE biological identification behavior monitoring
在线阅读 下载PDF
Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture 被引量:4
20
作者 R.Punithavathi A.Delphin Carolina Rani +4 位作者 K.R.Sughashinir Chinnarao Kurangit M.Nirmala Hasmath Farhana Thariq Ahmed S.P.Balamurugan 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2759-2774,共16页
Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)approaches.Weed plays a vital ... Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)approaches.Weed plays a vital role in influencing crop productivity.The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased.Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity,this study presents a novel computer vision and deep learning based weed detection and classification(CVDL-WDC)model for precision agriculture.The proposed CVDL-WDC technique intends to prop-erly discriminate the plants as well as weeds.The proposed CVDL-WDC technique involves two processes namely multiscale Faster RCNN based object detection and optimal extreme learning machine(ELM)based weed classification.The parameters of the ELM model are optimally adjusted by the use of farmland fertility optimization(FFO)algorithm.A comprehensive simulation analysis of the CVDL-WDC technique against benchmark dataset reported the enhanced out-comes over its recent approaches interms of several measures. 展开更多
关键词 Precision agriculture smart farming weed detection computer vision deep learning
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部