期刊文献+
共找到4,134篇文章
< 1 2 207 >
每页显示 20 50 100
Fine-tuning a large language model for automating computational fluid dynamics simulations
1
作者 Zhehao Dong Zhen Lu Yue Yang 《Theoretical & Applied Mechanics Letters》 2025年第3期219-225,共7页
Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automat... Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD. 展开更多
关键词 Large language models Fine-tuning computational fluid dynamics Automated cfd Multi-agent system
在线阅读 下载PDF
The Convergence of Computational Fluid Dynamics and Machine Learning in Oncology:A Review
2
作者 Wan Mohd Faizal Nurul Musfirah Mazlan +3 位作者 Shazril Imran Shaukat Chu Yee Khor Ab Hadi Mohd Haidiezul Abdul Khadir Mohamad Syafiq 《Computer Modeling in Engineering & Sciences》 2025年第8期1335-1369,共35页
Conventional oncology faces challenges such as suboptimal drug delivery,tumor heterogeneity,and therapeutic resistance,indicating a need formore personalized,andmechanistically grounded and predictive treatment strate... Conventional oncology faces challenges such as suboptimal drug delivery,tumor heterogeneity,and therapeutic resistance,indicating a need formore personalized,andmechanistically grounded and predictive treatment strategies.This review explores the convergence of Computational Fluid Dynamics(CFD)and Machine Learning(ML)as an integrated framework to address these issues in modern cancer therapy.The paper discusses recent advancements where CFD models simulate complex tumor microenvironmental conditions,like interstitial fluid pressure(IFP)and drug perfusion,and ML enhances simulation workflows,automates image-based segmentation,and enhances predictive accuracy.The synergy between CFD and ML improves scalability and enables patientspecific treatment planning.Methodologically,it coversmulti-scalemodeling approaches,nanotherapeutic simulations,imaging integration,and emerging AI-driven frameworks.The paper identifies gaps in current applications,including the need for robust clinical validation,real-time model adaptability,and ethical data integration.Future directions suggest that CFD–ML hybrids could serve as digital twins for tumor evolution,offering insights for adaptive therapies.The review advocates for a computationally augmented oncology ecosystem that combines biological complexity with engineering precision for next-generation cancer care. 展开更多
关键词 computational fluid dynamics(cfd) machine learning(ML) cancer modeling drug delivery simulation tumor microenvironment
在线阅读 下载PDF
CFD Simulation of Passenger Car Aerodynamics and Body Parameter Optimization
3
作者 Jichao Li Xuexin Zhu +2 位作者 Cong Zhang Shiwang Dang Guang Chen 《Fluid Dynamics & Materials Processing》 2025年第9期2305-2329,共25页
The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle... The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector. 展开更多
关键词 Automotive aerodynamic characteristics flow field aerodynamic drag drag reduction optimization cfd(computational fluid dynamics)
在线阅读 下载PDF
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
4
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction computational fluid dynamicscfd simulations
在线阅读 下载PDF
Relevant Fluid Dynamics Aspects of the Internal Ballistics in a Small-Scale Hybrid Thruster
5
作者 Sergio Cassese Riccardo Guida +2 位作者 Daniele Trincone Stefano Mungiguerra Raffaele Savino 《Fluid Dynamics & Materials Processing》 2025年第6期1299-1337,共39页
Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse an... Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse and predict relevant fluid dynamics phenomena within the thrust chamber of small-scale HREs.This work applies such techniques to investigate two unexpected behaviours observed in a 10 N-class hydrogen peroxide-based hybrid thruster:an uneven regression rate during High-Density Polyethylene(HDPE)and Acrylonitrile Butadiene Styrene(ABS)fuel tests,and non-negligible axial consumption in the ABS test case.The present study seeks to identify their fluid-dynamic origins by analysing key aspects of the thruster’s internal ballistics.The impact of recirculation zones and mixing on regression rates is quantified,as is the effect of grain heating on performance.Although already known in the present scientific literature,these phenomena prove to become particularly relevant for small-scale engines.Furthermore,the study demonstrates how appropriate numerical tools can replicate experimental findings,helping to foresee and mitigate undesirable behaviours in the design phases of future HRE propulsion systems.CFD results match the final HDPE grain geometry,reproducing the uneven port diameters with a maximum error below 9%.For ABS,axial regression is accurately captured,confirming the model’s reliability.Furthermore,average regression rates differ by only 1.60%and 1.20%for HDPE and ABS,respectively,while mass consumption is reproduced within 1.70%for HDPE and 3.01%for ABS.Overall,the results of the work demonstrate the reliability of the numerical approach adopted.This enriches the analysis capabilities devoted to 10 N-class engines,provides an additional tool for simulating the internal ballistics of small-scale hybrid thrusters,and integrates the existing literature with new insights into their fluid dynamics. 展开更多
关键词 computational fluid dynamics Transient cfd simulations Hybrid Thrusters Hydrogen Peroxide CubeSats
在线阅读 下载PDF
Acid-base regulation in duodenum by intestinal fluid secretion:A simulation study
6
作者 Yulan Zhao Yifan Qin +1 位作者 Xiao Dong Chen Jie Xiao 《Chinese Journal of Chemical Engineering》 2025年第5期76-86,共11页
Up to now,how the secretion modes of intestinal fluid(i.e.,pancreaticobiliary secretion and wall secretion)can regulate intestinal acid-base environment has not been fully understood.Understanding the regulation mecha... Up to now,how the secretion modes of intestinal fluid(i.e.,pancreaticobiliary secretion and wall secretion)can regulate intestinal acid-base environment has not been fully understood.Understanding the regulation mechanism is not only of great significance for intestinal health but may also lead to optimized designs for bio-inspired soft elastic reactors(SERs).In this work,the mixing and reaction of acidic gastric juice and alkaline intestinal fluid in a 3D duodenum with moving walls were modelled.A unique feature of this model is the implementation of both pancreaticobiliary and wall secretion of intestinal fluid as boundary conditions.This model allowed us to quantitatively explore the influence of secretion modes on pH regulation.The results demonstrated that coexistence of both pancreaticobiliary and wall secretions is the key to maintain the average pH in the duodenum at about 7.4.Their coexistence synergistically promotes the mixing and reaction of acid-base digestion liquids and provides a suitable catalytic environment for lipase in the intestine. 展开更多
关键词 MIXING BIOREACTOR computational fluid dynamics(cfd) Acid-base environment Intestinal physiology
暂未订购
A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy 被引量:8
7
作者 Yong-Hua Zhang Jian-Hui He +2 位作者 Jie Yang Shi-Wu Zhang Kin Huat Low 《International Journal of Automation and computing》 EI 2006年第4期374-381,共8页
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ... Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength). 展开更多
关键词 computational fluid dynamics cfd undulatory mechanical fin unsteady flow unstructured mesh Shape Memory Alloy (SMA)
在线阅读 下载PDF
Simulation and Analysis on the Two-Phase Flow Fields in a Rotating-Stream-Tray Absorber by Using Computational Fluid Dynamics 被引量:8
8
作者 邵雄飞 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期169-173,共5页
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model... The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design. 展开更多
关键词 rotating-stream-tray two-phase flow field simulation computational fluid dynamics
在线阅读 下载PDF
Computational fluid dynamics simulation of the wind flow over an airport terminal building 被引量:4
9
作者 Chun-ho LIU Dennis Y.C.LEUNG +1 位作者 Alex C.S.MAN P.W.CHAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第6期389-401,共13页
Turbulence in the wake generated by wind flow over buildings or obstacles may produce complex flow patterns in downstream areas.Examples include the recirculating flow and wind deficit areas behind an airport terminal... Turbulence in the wake generated by wind flow over buildings or obstacles may produce complex flow patterns in downstream areas.Examples include the recirculating flow and wind deficit areas behind an airport terminal building and their potential impacts on the aircraft landing on nearby runways.A computational fluid dynamics(CFD) simulation of the wind flow over an airport terminal building was performed in this study of the effect of the building wake on landing aircraft.Under normal meteorological conditions,the studied airport terminal building causes limited effects on landing aircraft because most of the aircraft have already landed before entering the turbulent wake region.By simulating the approach of a tropical cyclone,additional CFD sensitivity tests were performed to study the impacts of building wake under extreme meteorological conditions.It was found that,in a narrow range of prevalent wind directions with wind speeds larger than a certain threshold value,a substantial drop in wind speed(>3.6 m/s) along the glide path of aircraft was observed in the building wake.Our CFD results also showed that under the most critical situation,a drop in wind speed as large as 6.4 m/s occurred right at the touchdown point of landing aircraft on the runway,an effect which may have a significant impact on aircraft operations.This study indicated that a comprehensive analysis of the potential impacts of building wake on aircraft operations should be carried out for airport terminals and associated buildings in airfields to ensure safe aviation operation under all meteorological conditions and to facilitate implementation of precautionary measures. 展开更多
关键词 Aviation safety Building aerodynamics computational fluid dynamics cfd k-e turbulence model Tropicalcyclone
原文传递
Computational fluid dynamics simulations of respiratory airflow in human nasal cavity and its characteristic dimension study 被引量:3
10
作者 Jun Zhang Yingxi Liu +2 位作者 Xiuzhen Sun Shen Yu Chi Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期223-228,共6页
To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models... To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity. 展开更多
关键词 Nasal cavity Characteristic dimension Three-dimensional reconstruction Numerical simulation of flowfield computational fluid dynamic Finite element method
在线阅读 下载PDF
Application of computational fluid dynamics simulation for submarine oil spill 被引量:3
11
作者 YANG Zhenglong YU Jianxing +3 位作者 LI Zhigan CHEN Haicheng JIANG Meirong CHEN Xi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期104-115,共12页
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin... Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues. 展开更多
关键词 oil spill computational fluid dynamics cfd oil particles current velocity
在线阅读 下载PDF
The influence of temperature on flow-induced forces on quartz-crystal-microbalance sensors in a Chinese liquor identification electronic-nose: three-dimensional computational fluid dynamics simulation and analysis 被引量:2
12
作者 Qiang LI Yu GU Huatao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1301-1312,共12页
An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sens... An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature. 展开更多
关键词 computational fluid dynamics (cfd) TEMPERATURE quartz-crystalmicrobalance (QCM) gas sensor ELECTRONIC NOSE IDENTIFICATION accuracy
在线阅读 下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:4
13
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics cfd simulation flotation cell gas-liquid two-phases flow
在线阅读 下载PDF
Wind suitability in site analysis of coastal concave terrains using computational fluid dynamics simulation: a case study in East Asia 被引量:1
14
作者 Xiao-qing ZHU Jian-tao WENG +2 位作者 Yi-qun WU Wei-jun GAO Zhu WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第9期741-756,共16页
The effect of wind environment is becoming increasingly important in analyzing and selecting sites for better naturalventilation of residential buildings, external comfort, and pollution dispersion. The mainpurpose of... The effect of wind environment is becoming increasingly important in analyzing and selecting sites for better naturalventilation of residential buildings, external comfort, and pollution dispersion. The mainpurpose of this study was to develop a setof methods for wind environment assessment in coastal concave terrains. This set of methods can be used to provide quantifiableindicators of preferable wind conditions and help site analysis. Firstly, a total of 20 types of coastal bays with concave terrains inEast Asia were characterized to find ideal locations. The selected areas were divided into five categories according to the mainterrain features. Then a sample database for the concave terrains was compiled for modelling comparisons. Secondly, a number ofkey wind variables were identified. Computational fluid dynamics (CFD) models of the typical coastal concave terrains identifiedas a result of the study were created, and the local wind environments were simulated with input from geographic informationsystem (GIS) and statistic package for social science (SPSS) analysis. A measure of wind suitability was proposed that takes windvelocity and wind direction into account using GIS. Finally, SPSS was used to find the relationship between wind suitability andkey terrain factors. The results showed that wind suitability was significantly associated with terrain factors, especially altitude.The results suggest that residential building sites should be selected such that their bay openings face the direction of the prevailingwind and that the opposite direction should be avoided. 展开更多
关键词 WIND SUITABILITY RESIDENTIAL building computational fluid dynamics (cfd) COASTAL CONCAVE terrains East Asia
原文传递
A simplified approach to modelling blasts in computational fluid dynamics (CFD) 被引量:2
15
作者 D.Mohotti K.Wijesooriya S.Weckert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期19-34,共16页
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e... This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds. 展开更多
关键词 Blast loads computational fluid dynamics Explosions Numerical simulations
在线阅读 下载PDF
Computational fluid dynamics simulation of a novel bioreactor forsophorolipid production 被引量:1
16
作者 Xiaoqiang Jia Lin Qi +4 位作者 Yaguang Zhang Xue Yang Hongna Wang Fanglong Zhao Wenyu Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第6期732-740,共9页
This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)u... This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)used for sophorolipid(SL) production. To evaluate the role of hydrodynamics in reactor design, the comparisons between conventional fed-batch fermenter and DVDSB on the hydrodynamic behavior are predicted by the CFD methods. Important hydrodynamic parameters of the gas–liquid two-phase system such as the liquid phase velocity field, turbulent kinetic energy and volume-averaged overall and time-averaged local gas holdups were simulated and analyzed in detail. The numerical results were also validated by experimental measurements of overall gas holdups. The yield of sophorolipids was significantly improved to 484 g·L^(-1)with a 320 h fermentation period in the new reactor. 展开更多
关键词 Bioreactors Gas HOLD-UP computational fluid dynamics (cfd)Hydrodynamics Sophorolipid production
在线阅读 下载PDF
Computational simulation of fluid dynamics in a tubular stirred reactor 被引量:7
17
作者 曹晓畅 张廷安 赵秋月 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第2期489-495,共7页
The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame... The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame(MRF) were adopted. The various values of initial rotating speed and inlet flow rate were adopted. Simulations were validated with experimental residence time distribution(RTD) determination. It is shown that the fluid flow is very turbulent and the flow pattern approaches to the plug flow. The velocity increases from shaft to the end of impeller,and the gradient is enlarged by increasing the rotating speed. Comparison between RTD curves shows that agitation can improve the performance of reactor. As the flow rate increases,the mean residence time decreases proportionally,and the variance of RTD lessens as well. When rotating speed increases to a certain value,the variance of RTD is enlarged by increasing rotating speed,but the mean residence time has no obvious change. 展开更多
关键词 计算流体动力学模拟 搅拌反应器 FLUENT软件 停留时间分布 转速上升 管式 平均滞留时间 进气流量
在线阅读 下载PDF
Computational fluid dynamics simulation of formaldehyde emission characteristics and its experimental validation in environment chamber 被引量:2
18
作者 刘志坚 《Journal of Chongqing University》 CAS 2010年第3期124-132,共9页
We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating forma... We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms. 展开更多
关键词 formaldehyde concentration environment chamber computational fluid dynamics simulation supply air rate TEMPERATURE
在线阅读 下载PDF
Modelling and numerical simulation of isothermal oxidation of an individual magnetite pellet based on computational fluid dynamics 被引量:1
19
作者 Zhou Pu Feng Zhou +2 位作者 Yue Sun Ming Zhang Bo-quan Li 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第7期799-808,共10页
A mathematical model based on the computational fluid dynamics method,heat and mass transfer in porous media and the unreacted shrinking core model for the oxidation reaction of an individual magnetite pellet during p... A mathematical model based on the computational fluid dynamics method,heat and mass transfer in porous media and the unreacted shrinking core model for the oxidation reaction of an individual magnetite pellet during preheating was established.The commercial software COMSOL Multiphysics was used to simulate the change in the oxidation degree of the pellet at different temperatures and oxygen concentrations,and the simulated results were compared with the exper-imental results.The model considered the influence of the exothermic heat of the reaction,and the enthalpy change was added to calculate the heat released by the oxidation.The results show that the oxidation rate on the surface of the pellet is much faster than that of the inside of the pellet.Temperature and oxygen concentration have great influence on the pellet oxidation model.Meanwhile,the exothermic calculation results show that there is a non-isothermal phenomenon inside the pellet,which leads to an increase in temperature inside the single pellet.Under the preheating condition of 873-1273 K(20%oxygen content),the heat released by the pellet oxidation reaction in a chain grate is 7.8×10^(6)-10.8×10^(6) kJ/h,which is very large and needs to be considered in the magnetite pellet oxidation modelling. 展开更多
关键词 Magnetite pellet OXIDATION Numerical simulation Unreacted shrinking core model computational fluid dynamics
原文传递
A computational fluid dynamics model for wind simulation:model implementation and experimental validation 被引量:1
20
作者 Zhuo-dong ZHANG Ralf WIELAND +4 位作者 Matthias REICHE Roger FUNK Carsten HOFFMANN Yong LI Michael SOMMER 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第4期274-283,共10页
To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stok... To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was con- ducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear imple- mentation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale. 展开更多
关键词 Wind model computational fluid dynamics cfd Wind erosion Wind tunnel experiments Spatial analysis andmodelling tool (SAMT) Open source
原文传递
上一页 1 2 207 下一页 到第
使用帮助 返回顶部