1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers ...1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers are now able to incorporate intricate features such as delays,stochastic effects,fractional dynamics,variable-order systems,and uncertainty into epidemic models.These advancements not only improve predictive accuracy but also enable deeper insights into disease transmission,control,and policy-making.Tashfeen et al.展开更多
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r...The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.展开更多
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digit...The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digital humanities and computational criticism in recent years.During his visiting scholarship at Stanford University,he participated in the activities of the Literary Lab.Taking this opportunity,he interviewed Professor Mark Algee-Hewitt,the director of the Literary Lab,discussing important topics such as the current state and reception of DH(digital humanities)in the English Department,the operations of the Literary Lab,and the landscape of computational criticism.Mark Algee-Hewitt's research focuses on the eighteenth and early nineteenth centuries in England and Germany and seeks to combine literary criticism with digital and quantitative analyses of literary texts.In particular,he is interested in the history of aesthetic theory and the development and transmission of aesthetic and philosophical concepts during the Enlightenment and Romantic periods.He is also interested in the relationship between aesthetic theory and the poetry of the long eighteenth century.Although his primary background is English literature,he also has a degree in computer science.He believes that the influence of digital humanities within the humanities disciplines is growing increasingly significant.This impact is evident in both the attraction and assistance it offers to students,as well as in the new interpretations it brings to traditional literary studies.He argues that the key to effectively integrating digital humanities into the English Department is to focus on literary research questions,exploring how digital tools can raise new questions or provide new insights into traditional research.展开更多
This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules:insufficient photogenerated current.Various organic blends,...This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules:insufficient photogenerated current.Various organic blends,including PTB7-Th:FOIC,PTB7-Th:O6T-4F,PM6:Y6,and PM6:FM,were systematically tested.When coupled with electron transport layer(ETL)contacts,these blends exhibit exceptional charge separation and extraction,with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm^(-2) at 1.23 VRHE(oxygen evolution thermodynamic potential).For the first time,a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7mA cm^(-2) at 0 VRHE(hydrogen evolution thermodynamic potential)and anodic current onset potentials as low as-0.5 VRHE.The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.展开更多
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ...As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.展开更多
Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieve...Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings.展开更多
Biotechnological strategies for plastic depolymerization and recycling have emerged as transformative approaches to combat the global plastic pollution crisis,aligning with the principles of a sustainable and circular...Biotechnological strategies for plastic depolymerization and recycling have emerged as transformative approaches to combat the global plastic pollution crisis,aligning with the principles of a sustainable and circular economy.Despite advances in engineering PET hydrolases,the degradation process is frequently compromised by product inhibition and the heterogeneity of final products,thereby obstructing subsequent PET recondensation and impeding the synthesis of high-value derivatives.In this work,we utilized previously devised computational strategies to redesign a thermostable DuraMHETase,achieving an apparent melting temperature of 72℃ in complex with MHET and a 6-fold higher in total turnover number(TTN)toward MHET than the wild-type enzyme at 60℃.The fused enzyme system composed of DuraMHETase and TurboPETase demonstrated higher efficiency than other PET hydrolases and the separated dual enzyme systems.Furthermore,we identified both exo-and endo-PETase activities in DuraMHETase,whereas the endo-activity was previously unobserved at ambient temperatures.These results expand the functional scope of MHETase beyond mere intermediate hydrolysis,and may provide guidance for the development of more synergistic approaches to plastic biodepolymerization and recycling.展开更多
The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of ...The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems.展开更多
Effectively handling imbalanced datasets remains a fundamental challenge in computational modeling and machine learning,particularly when class overlap significantly deteriorates classification performance.Traditional...Effectively handling imbalanced datasets remains a fundamental challenge in computational modeling and machine learning,particularly when class overlap significantly deteriorates classification performance.Traditional oversampling methods often generate synthetic samples without considering density variations,leading to redundant or misleading instances that exacerbate class overlap in high-density regions.To address these limitations,we propose Wasserstein Generative Adversarial Network Variational Density Estimation WGAN-VDE,a computationally efficient density-aware adversarial resampling framework that enhances minority class representation while strategically reducing class overlap.The originality of WGAN-VDE lies in its density-aware sample refinement,ensuring that synthetic samples are positioned in underrepresented regions,thereby improving class distinctiveness.By applying structured feature representation,targeted sample generation,and density-based selection mechanisms strategies,the proposed framework ensures the generation of well-separated and diverse synthetic samples,improving class separability and reducing redundancy.The experimental evaluation on 20 benchmark datasets demonstrates that this approach outperforms 11 state-of-the-art rebalancing techniques,achieving superior results in F1-score,Accuracy,G-Mean,and AUC metrics.These results establish the proposed method as an effective and robust computational approach,suitable for diverse engineering and scientific applications involving imbalanced data classification and computational modeling.展开更多
Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automat...Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.展开更多
Cardiolipins(CLs),the mitochondria-specific class of phospholipids,are crucial to energy metabolism,cristae structure,and cell apoptosis.CLs present significant challenges in lipidomics analysis due to their structura...Cardiolipins(CLs),the mitochondria-specific class of phospholipids,are crucial to energy metabolism,cristae structure,and cell apoptosis.CLs present significant challenges in lipidomics analysis due to their structural diversity with up to four fatty acyl side chains.In this study,we developed CLAN(Cardio Lipin ANalysis),a comprehensive computational pipeline designed to improve the accuracy and coverage of cardiolipin identification.CLAN integrates three innovative modules:A cardiolipin identification module that utilizes specific fragmentation rules for precise characterization of CLs and their acyl side chains;a false positives detection module that employs retention time(RT)criteria to reduce false positives;and a prediction module that constructs regression models to identify CLs lacking authentic MS/MS spectra.CLAN achieved better identification accuracy and the highest recall rate for potential CL identification compared to the existing lipid identification tools.Furthermore,we applied CLAN program to an intermittent fasting mouse model,delineating tissue-specific CL alterations across 10 tissues.Every-other-day fasting(EODF)can partially counteract the disruption of the CL atlas across multiple tissues caused by high-fat-high-sugar diet feeding,providing novel insights into mitochondrial lipid metabolism under dietary interventions.Taken together,this work not only advances CL identification methodology but also underscores CLAN's potential in comprehensive analysis of CL atlas in the EODF animal model.CLAN is freely accessible on Git Hub.展开更多
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ...Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.展开更多
Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the pro...Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the production of thoracic implants with complex geometries,offering more versatile performance.In this study,we investigated a design based on a spring-like geometry manufactured by laser powder bed fusion(LPBF),as proposed in earlier research.The biomechanical behavior of this design was analyzed using various isolated semi-ring-rib models at different levels of the rib cage.This approach enabled a comprehensive examination,leading to the proposal of several implant configurations that were incorporated into a 3D rib cage model with chest wall defects,to simulate different chest wall reconstruction scenarios.The results revealed that the implant design was too rigid for the second rib level,which therefore was excluded from the proposed implant configurations.In chest wall reconstruction simulations,the maximum stresses observed in all prostheses did not exceed 38%of the implant material's yield stress in the most unfavorable case.Additionally,all the implants showed flexibility compatible with the physiological movements of the human thorax.展开更多
Separating He from CH_(4)or N_(2)is crucial for natural gas He extraction,a prevailing industrial approach.Herein,molecular simulation and machine learning(ML)were combined to screen 801 experimentally synthesized COF...Separating He from CH_(4)or N_(2)is crucial for natural gas He extraction,a prevailing industrial approach.Herein,molecular simulation and machine learning(ML)were combined to screen 801 experimentally synthesized COFs for He/CH_(4)and He/N_(2)separation,either by means of adsorption or membrane separation.Top 10 COFs for 4 different gas separation purposes(CH_(4)/He or N_(2)/He separation with either adsorption or membrane)were identified respectively.The highest adsorption performance score(APSmix,defined as the product of working capacity and adsorption selectivity for mixture gas)reached 447.88 mol/kg and 49.45 mol/kg for CH_(4)/He and N_(2)/He,with corresponding adsorption selectivity of 115.56 and 30.33.He permeabilities of 1.5×10^(6)or 1.2×10^(6)Barrer were achieved for equimolar He/CH_(4)or He/N_(2)mixture gas separations,accompanied by permselectivity of 5.47 and 11.80 well surpassing 2008 Robeson's upper bound.Best performing COFs for adsorption separation are 3D COFs with pore diameter below 0.8 nm while those for membrane separation are 2D COFs with large pores.Additionally,ML models were developed to predict separation performance,with key descriptors identified.The mechanism for how COFs'structure affects their separation performance was also revealed.展开更多
Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runa...Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runaway is the key scientific problem in battery safety research,which can cause fire and even lead to battery explosion under impact loading.In this work,a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established.The detailed computational model,including the anode,cathode,separator,winding,and battery casing,is then developed under the indentation condition.The failure criteria are subsequently established based on the force–displacement curve and the separator failure.Two methods for improving the anti-short circuit ability are proposed.Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.展开更多
This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer si...This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems.展开更多
Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuver...Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions.展开更多
For the advancement of fast-charging sodium-ion batteries(SIBs),the synthesis of cutting-edge cathode materials with superior structural stability and enhanced Na+diffusion kinetics is imperative.Multiphase layered tr...For the advancement of fast-charging sodium-ion batteries(SIBs),the synthesis of cutting-edge cathode materials with superior structural stability and enhanced Na+diffusion kinetics is imperative.Multiphase layered transition metal oxides(LTMOs),which leverage the synergistic properties of two distinct monophasic LTMOs,have garnered significant attention;however,their efficacy under fast-charging conditions remains underexplored.In this study,we developed a high-throughput computational screening framework to identify optimal dopants that maximize the electrochemical performance of LTMOs.Specifically,we evaluated the efficacy of 32 dopants based on P2/O3-type Mn/Fe-based Na_(x)Mn_(0.5)Fe_(0.5)O_(2)(NMFO)cathode material.Multiphase LTMOs satisfying criteria for thermodynamic and structural stability,minimized phase transitions,and enhanced Na^(+)diffusion were systematically screened for their suitability in fast-charging applications.The analysis identified two dopants,Ti and Zr,which met all predefined screening criteria.Furthermore,we ranked and scored dopants based on their alignment with these criteria,establishing a comprehensive dopant performance database.These findings provide a robust foundation for experimental exploration and offer detailed guidelines for tailoring dopants to optimize fast-charging SIBs.展开更多
Based on BERTopic Model,the paper combines qualitative and quantitative methods to explore the reception of Can Xue’s translated works by analyzing readers’book reviews posted on Goodreads and Lovereading.We first c...Based on BERTopic Model,the paper combines qualitative and quantitative methods to explore the reception of Can Xue’s translated works by analyzing readers’book reviews posted on Goodreads and Lovereading.We first collected book reviews from these two well-known websites by Python.Through topic analysis of these reviews,we identified recurring topics,including details of her translated works and appreciation of their translation quality.Then,employing sentiment and content analysis methods,the paper explored the emotional attitudes and the specific thoughts of readers toward Can Xue and her translated works.The fingdings revealed that,among the 408 reviews,though the reception of Can Xue’s translated works was relatively positive,the current level of attention and recognition remains insufficient.However,based on the research results,the paper can derive valuable insights into the translation and dissemination processes such as adjusting translation and dissemination strategies,so that the global reach of Chinese literature and culture can be better facilitated.展开更多
文摘1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers are now able to incorporate intricate features such as delays,stochastic effects,fractional dynamics,variable-order systems,and uncertainty into epidemic models.These advancements not only improve predictive accuracy but also enable deeper insights into disease transmission,control,and policy-making.Tashfeen et al.
文摘The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
文摘The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digital humanities and computational criticism in recent years.During his visiting scholarship at Stanford University,he participated in the activities of the Literary Lab.Taking this opportunity,he interviewed Professor Mark Algee-Hewitt,the director of the Literary Lab,discussing important topics such as the current state and reception of DH(digital humanities)in the English Department,the operations of the Literary Lab,and the landscape of computational criticism.Mark Algee-Hewitt's research focuses on the eighteenth and early nineteenth centuries in England and Germany and seeks to combine literary criticism with digital and quantitative analyses of literary texts.In particular,he is interested in the history of aesthetic theory and the development and transmission of aesthetic and philosophical concepts during the Enlightenment and Romantic periods.He is also interested in the relationship between aesthetic theory and the poetry of the long eighteenth century.Although his primary background is English literature,he also has a degree in computer science.He believes that the influence of digital humanities within the humanities disciplines is growing increasingly significant.This impact is evident in both the attraction and assistance it offers to students,as well as in the new interpretations it brings to traditional literary studies.He argues that the key to effectively integrating digital humanities into the English Department is to focus on literary research questions,exploring how digital tools can raise new questions or provide new insights into traditional research.
基金partly funded by a BIST Ignite Programme grant from the Barcelona Institute of Science and Technology(Code:MOLOPEC)financial support from LICROX and SOREC2 EUFunded projects(Codes:951843 and 101084326)+7 种基金the BIST Program,and Severo Ochoa Programpartially funded by CEX2019-000910-S(MCIN/AEI/10.13039/501100011033 and PID2020-112650RBI00),Fundació Cellex,Fundació Mir-PuigGeneralitat de Catalunya through CERCAfunding from the European Union’s Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101081441financial support by the Agencia Estatal de Investigación(grant PRE2018-084881)the financial support by from the European Union’s Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101081441support from the MCIN/AEI JdC-F Fellowship(FJC2020-043223-I)the Severo Ochoa Excellence Postdoctoral Fellowship(CEX2019-000910-S).
文摘This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules:insufficient photogenerated current.Various organic blends,including PTB7-Th:FOIC,PTB7-Th:O6T-4F,PM6:Y6,and PM6:FM,were systematically tested.When coupled with electron transport layer(ETL)contacts,these blends exhibit exceptional charge separation and extraction,with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm^(-2) at 1.23 VRHE(oxygen evolution thermodynamic potential).For the first time,a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7mA cm^(-2) at 0 VRHE(hydrogen evolution thermodynamic potential)and anodic current onset potentials as low as-0.5 VRHE.The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.
基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62371012in part by the Beijing Natural Science Foundation under Grant 4252001.
文摘As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.
基金financial support from the Centro de Matematica da Universidade doMinho(CMAT/UM),through project UID/00013.
文摘Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings.
文摘Biotechnological strategies for plastic depolymerization and recycling have emerged as transformative approaches to combat the global plastic pollution crisis,aligning with the principles of a sustainable and circular economy.Despite advances in engineering PET hydrolases,the degradation process is frequently compromised by product inhibition and the heterogeneity of final products,thereby obstructing subsequent PET recondensation and impeding the synthesis of high-value derivatives.In this work,we utilized previously devised computational strategies to redesign a thermostable DuraMHETase,achieving an apparent melting temperature of 72℃ in complex with MHET and a 6-fold higher in total turnover number(TTN)toward MHET than the wild-type enzyme at 60℃.The fused enzyme system composed of DuraMHETase and TurboPETase demonstrated higher efficiency than other PET hydrolases and the separated dual enzyme systems.Furthermore,we identified both exo-and endo-PETase activities in DuraMHETase,whereas the endo-activity was previously unobserved at ambient temperatures.These results expand the functional scope of MHETase beyond mere intermediate hydrolysis,and may provide guidance for the development of more synergistic approaches to plastic biodepolymerization and recycling.
基金supported by the Australian Research Council(Grant No.IC190100020)the Australian Research Council Indus〓〓try Fellowship(Grant No.IE230100435)the National Natural Science Foundation of China(Grant Nos.12032014 and T2488101)。
文摘The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems.
基金supported by Ongoing Research Funding Program(ORF-2025-488)King Saud University,Riyadh,Saudi Arabia.
文摘Effectively handling imbalanced datasets remains a fundamental challenge in computational modeling and machine learning,particularly when class overlap significantly deteriorates classification performance.Traditional oversampling methods often generate synthetic samples without considering density variations,leading to redundant or misleading instances that exacerbate class overlap in high-density regions.To address these limitations,we propose Wasserstein Generative Adversarial Network Variational Density Estimation WGAN-VDE,a computationally efficient density-aware adversarial resampling framework that enhances minority class representation while strategically reducing class overlap.The originality of WGAN-VDE lies in its density-aware sample refinement,ensuring that synthetic samples are positioned in underrepresented regions,thereby improving class distinctiveness.By applying structured feature representation,targeted sample generation,and density-based selection mechanisms strategies,the proposed framework ensures the generation of well-separated and diverse synthetic samples,improving class separability and reducing redundancy.The experimental evaluation on 20 benchmark datasets demonstrates that this approach outperforms 11 state-of-the-art rebalancing techniques,achieving superior results in F1-score,Accuracy,G-Mean,and AUC metrics.These results establish the proposed method as an effective and robust computational approach,suitable for diverse engineering and scientific applications involving imbalanced data classification and computational modeling.
基金supported by the National Natural Science Foundation of China(Grant Nos.52306126,22350710788,12432010,11988102,92270203)the Xplore Prize.
文摘Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
基金supported by grants from the National Key Research and Development Program of China(No.2022YFE0205800)the National Natural Science Foundation of China(No.21974114)+5 种基金Major Science and Technology Special Project of Fujian Province(No.2022YZ036012)the Fundamental Research Funds for the Central Universities(No.20720220003)Project“111”sponsored by the State Bureau of Foreign Experts and Ministry of Education of China(No.BP0618017)to S.-H.LinNatural Science Foundation of Fujian Province of China(No.2022J01330)Natural Science Foundation of Xiamen City of China(No.3502Z20227208)the China Scholarship Council(No.202308350047)to J.Zeng。
文摘Cardiolipins(CLs),the mitochondria-specific class of phospholipids,are crucial to energy metabolism,cristae structure,and cell apoptosis.CLs present significant challenges in lipidomics analysis due to their structural diversity with up to four fatty acyl side chains.In this study,we developed CLAN(Cardio Lipin ANalysis),a comprehensive computational pipeline designed to improve the accuracy and coverage of cardiolipin identification.CLAN integrates three innovative modules:A cardiolipin identification module that utilizes specific fragmentation rules for precise characterization of CLs and their acyl side chains;a false positives detection module that employs retention time(RT)criteria to reduce false positives;and a prediction module that constructs regression models to identify CLs lacking authentic MS/MS spectra.CLAN achieved better identification accuracy and the highest recall rate for potential CL identification compared to the existing lipid identification tools.Furthermore,we applied CLAN program to an intermittent fasting mouse model,delineating tissue-specific CL alterations across 10 tissues.Every-other-day fasting(EODF)can partially counteract the disruption of the CL atlas across multiple tissues caused by high-fat-high-sugar diet feeding,providing novel insights into mitochondrial lipid metabolism under dietary interventions.Taken together,this work not only advances CL identification methodology but also underscores CLAN's potential in comprehensive analysis of CL atlas in the EODF animal model.CLAN is freely accessible on Git Hub.
基金supported by the Major Research Instrument Development Project of the National Natural Science Foundation of China(82327810)the Foundation of the President of Hebei University(XZJJ202202)the Hebei Province“333 talent project”(A202101058).
文摘Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
文摘Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the production of thoracic implants with complex geometries,offering more versatile performance.In this study,we investigated a design based on a spring-like geometry manufactured by laser powder bed fusion(LPBF),as proposed in earlier research.The biomechanical behavior of this design was analyzed using various isolated semi-ring-rib models at different levels of the rib cage.This approach enabled a comprehensive examination,leading to the proposal of several implant configurations that were incorporated into a 3D rib cage model with chest wall defects,to simulate different chest wall reconstruction scenarios.The results revealed that the implant design was too rigid for the second rib level,which therefore was excluded from the proposed implant configurations.In chest wall reconstruction simulations,the maximum stresses observed in all prostheses did not exceed 38%of the implant material's yield stress in the most unfavorable case.Additionally,all the implants showed flexibility compatible with the physiological movements of the human thorax.
基金the support from the Natural Science Foundation of China(U23A20115)the Natural Science Foundation of China(22368027,22078104)+4 种基金Science and Technology Key Project of Guangdong Province(2025B0101060003)the Natural Science Foundation of Guangdong Province(2024A1515012725,2024A1515012724)Guangzhou Municipal Science and Technology Project(2024A04J6251)State Key Laboratory of Pulp and Paper Engineering 2024ZD03Fundamental Research Funds for the Central Universities(2025ZYGXZR023)。
文摘Separating He from CH_(4)or N_(2)is crucial for natural gas He extraction,a prevailing industrial approach.Herein,molecular simulation and machine learning(ML)were combined to screen 801 experimentally synthesized COFs for He/CH_(4)and He/N_(2)separation,either by means of adsorption or membrane separation.Top 10 COFs for 4 different gas separation purposes(CH_(4)/He or N_(2)/He separation with either adsorption or membrane)were identified respectively.The highest adsorption performance score(APSmix,defined as the product of working capacity and adsorption selectivity for mixture gas)reached 447.88 mol/kg and 49.45 mol/kg for CH_(4)/He and N_(2)/He,with corresponding adsorption selectivity of 115.56 and 30.33.He permeabilities of 1.5×10^(6)or 1.2×10^(6)Barrer were achieved for equimolar He/CH_(4)or He/N_(2)mixture gas separations,accompanied by permselectivity of 5.47 and 11.80 well surpassing 2008 Robeson's upper bound.Best performing COFs for adsorption separation are 3D COFs with pore diameter below 0.8 nm while those for membrane separation are 2D COFs with large pores.Additionally,ML models were developed to predict separation performance,with key descriptors identified.The mechanism for how COFs'structure affects their separation performance was also revealed.
基金supported by the National Natural Science Foundation of China(Grant Numbers:12172149 and 12172151).
文摘Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runaway is the key scientific problem in battery safety research,which can cause fire and even lead to battery explosion under impact loading.In this work,a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established.The detailed computational model,including the anode,cathode,separator,winding,and battery casing,is then developed under the indentation condition.The failure criteria are subsequently established based on the force–displacement curve and the separator failure.Two methods for improving the anti-short circuit ability are proposed.Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.
基金funded by Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2024/TK10/UKM/02/7).
文摘This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems.
文摘Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1F1A1074339)。
文摘For the advancement of fast-charging sodium-ion batteries(SIBs),the synthesis of cutting-edge cathode materials with superior structural stability and enhanced Na+diffusion kinetics is imperative.Multiphase layered transition metal oxides(LTMOs),which leverage the synergistic properties of two distinct monophasic LTMOs,have garnered significant attention;however,their efficacy under fast-charging conditions remains underexplored.In this study,we developed a high-throughput computational screening framework to identify optimal dopants that maximize the electrochemical performance of LTMOs.Specifically,we evaluated the efficacy of 32 dopants based on P2/O3-type Mn/Fe-based Na_(x)Mn_(0.5)Fe_(0.5)O_(2)(NMFO)cathode material.Multiphase LTMOs satisfying criteria for thermodynamic and structural stability,minimized phase transitions,and enhanced Na^(+)diffusion were systematically screened for their suitability in fast-charging applications.The analysis identified two dopants,Ti and Zr,which met all predefined screening criteria.Furthermore,we ranked and scored dopants based on their alignment with these criteria,establishing a comprehensive dopant performance database.These findings provide a robust foundation for experimental exploration and offer detailed guidelines for tailoring dopants to optimize fast-charging SIBs.
基金supported by the 2023 Youth Fund for Humanities and Social Sciences Research by the Ministry of Education of the People’s Republic of China(Grant No.23YJC740004).
文摘Based on BERTopic Model,the paper combines qualitative and quantitative methods to explore the reception of Can Xue’s translated works by analyzing readers’book reviews posted on Goodreads and Lovereading.We first collected book reviews from these two well-known websites by Python.Through topic analysis of these reviews,we identified recurring topics,including details of her translated works and appreciation of their translation quality.Then,employing sentiment and content analysis methods,the paper explored the emotional attitudes and the specific thoughts of readers toward Can Xue and her translated works.The fingdings revealed that,among the 408 reviews,though the reception of Can Xue’s translated works was relatively positive,the current level of attention and recognition remains insufficient.However,based on the research results,the paper can derive valuable insights into the translation and dissemination processes such as adjusting translation and dissemination strategies,so that the global reach of Chinese literature and culture can be better facilitated.