期刊文献+
共找到253,342篇文章
< 1 2 250 >
每页显示 20 50 100
A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing
1
作者 Sreebha Bhaskaran Supriya Muthuraman 《Computers, Materials & Continua》 2025年第6期5037-5070,共34页
Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating ... Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities. 展开更多
关键词 Cloud computing edge computing fog computing resource provisioning resource allocation computation offloading optimization techniques software defined network
在线阅读 下载PDF
In-Memory Probabilistic Computing Using Gate-Tunable Layer Pseudospins in van der Waals Heterostructures
2
作者 Jiao Xie Jun-Lin Xiong +2 位作者 Bin Cheng Shi-Jun Liang Feng Miao 《Chinese Physics Letters》 2025年第4期9-22,共14页
Layer pseudospins,exhibiting quantum coherence and precise multistate controllability,present significant potential for the advancement of future computing technologies.In this work,we propose an in-memory probabilist... Layer pseudospins,exhibiting quantum coherence and precise multistate controllability,present significant potential for the advancement of future computing technologies.In this work,we propose an in-memory probabilistic computing scheme based on the electrical manipulation of layer pseudospins in layered materials,by exploiting the interaction between real spins and layer pseudospins. 展开更多
关键词 layer pseudospinsexhibiting layered materialsby real spins probabilistic computing advancement future computing technologiesin electrical manipulation layer pseudospins memory computing gate tunable layer pseudospins
原文传递
Comparative study of IoT-and AI-based computing disease detection approaches
3
作者 Wasiur Rhmann Jalaluddin Khan +8 位作者 Ghufran Ahmad Khan Zubair Ashraf Babita Pandey Mohammad Ahmar Khan Ashraf Ali Amaan Ishrat Abdulrahman Abdullah Alghamdi Bilal Ahamad Mohammad Khaja Shaik 《Data Science and Management》 2025年第1期94-106,共13页
The emergence of different computing methods such as cloud-,fog-,and edge-based Internet of Things(IoT)systems has provided the opportunity to develop intelligent systems for disease detection.Compared to other machin... The emergence of different computing methods such as cloud-,fog-,and edge-based Internet of Things(IoT)systems has provided the opportunity to develop intelligent systems for disease detection.Compared to other machine learning models,deep learning models have gained more attention from the research community,as they have shown better results with a large volume of data compared to shallow learning.However,no comprehensive survey has been conducted on integrated IoT-and computing-based systems that deploy deep learning for disease detection.This study evaluated different machine learning and deep learning algorithms and their hybrid and optimized algorithms for IoT-based disease detection,using the most recent papers on IoT-based disease detection systems that include computing approaches,such as cloud,edge,and fog.Their analysis focused on an IoT deep learning architecture suitable for disease detection.It also recognizes the different factors that require the attention of researchers to develop better IoT disease detection systems.This study can be helpful to researchers interested in developing better IoT-based disease detection and prediction systems based on deep learning using hybrid algorithms. 展开更多
关键词 Deep learning Internet of Things(IoT) Cloud computing Fog computing Edge computing
在线阅读 下载PDF
A comprehensive survey of orbital edge computing:Systems,applications,and algorithms
4
作者 Zengshan YIN Changhao WU +4 位作者 Chongbin GUO Yuanchun LI Mengwei XU Weiwei GAO Chuanxiu CHI 《Chinese Journal of Aeronautics》 2025年第7期310-339,共30页
The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up ... The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed. 展开更多
关键词 Orbital edge computing Ubiquitous computing Large-scale satellite constellations computation offloading
原文传递
Nano device fabrication for in-memory and in-sensor reservoir computing
5
作者 Yinan Lin Xi Chen +4 位作者 Qianyu Zhang Junqi You Renjing Xu Zhongrui Wang Linfeng Sun 《International Journal of Extreme Manufacturing》 2025年第1期46-71,共26页
Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasti... Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasting.Despite their versatility,RNNs are frequently beset by significant training expenses and slow convergence times,which impinge upon their deployment in edge AI applications.Reservoir computing(RC),a specialized RNN variant,is attracting increased attention as a cost-effective alternative for processing temporal and sequential data at the edge.RC’s distinctive advantage stems from its compatibility with emerging memristive hardware,which leverages the energy efficiency and reduced footprint of analog in-memory and in-sensor computing,offering a streamlined and energy-efficient solution.This review offers a comprehensive explanation of RC’s underlying principles,fabrication processes,and surveys recent progress in nano-memristive device based RC systems from the viewpoints of in-memory and in-sensor RC function.It covers a spectrum of memristive device,from established oxide-based memristive device to cutting-edge material science developments,providing readers with a lucid understanding of RC’s hardware implementation and fostering innovative designs for in-sensor RC systems.Lastly,we identify prevailing challenges and suggest viable solutions,paving the way for future advancements in in-sensor RC technology. 展开更多
关键词 reservoir computing memristive device fabrication compute-in-memory in-sensor computing
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
6
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Role of photon-counting computed tomography in pediatric cardiovascular imaging 被引量:1
7
作者 Arosh S Perera Molligoda Arachchige Yash Verma 《World Journal of Clinical Pediatrics》 2025年第1期55-62,共8页
Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible ligh... Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety. 展开更多
关键词 CARDIOVASCULAR Photon-counting detectors PEDIATRIC Photon-counting computed tomography computed tomography
暂未订购
Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches
8
作者 Yunfeng Ge Zihao Li +2 位作者 Huiming Tang Qian Chen Zhongxu Wen 《Geoscience Frontiers》 2025年第5期1-15,共15页
The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the ... The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the high quality of data it provides.However,as research extends to address more regional and complex geological challenges,the demand for algorithms that are both robust and highly efficient in processing large datasets continues to grow.This study proposes an advanced rock joint identification algorithm leveraging artificial neural networks(ANNs),incorporating parallel computing and vectorization of high-performance computing.The algorithm utilizes point cloud attributes—specifically point normal and point curvatures-as input parameters for ANNs,which classify data into rock joints and non-rock joints.Subsequently,individual rock joints are extracted using the density-based spatial clustering of applications with noise(DBSCAN)technique.Principal component analysis(PCA)is subsequently employed to calculate their orientations.By fully utilizing the computational power of parallel computing and vectorization,the algorithm increases the running speed by 3–4 times,enabling the processing of large-scale datasets within seconds.This breakthrough maximizes computational efficiency while maintaining high accuracy(compared with manual measurement,the deviation of the automatic measurement is within 2°),making it an effective solution for large-scale rock joint detection challenges.©2025 China University of Geosciences(Beijing)and Peking University. 展开更多
关键词 Rock joints Pointclouds Artificialneuralnetwork High-performance computing Parallel computing VECTORIZATION
在线阅读 下载PDF
Role of computed tomography in the assessment of caustic ingestion severity:A comprehensive review
9
作者 Alberto Martino Marco Di Serafino +8 位作者 Francesco Paolo Zito Luigi Orsini Lorena Pietrini Antonella Menchise Martina Cargiolli Lorenzo Anastasio Rossana Martino Raffaele Bennato Giovanni Lombardi 《World Journal of Radiology》 2025年第7期69-77,共9页
Caustic ingestion is a relatively rare but potentially catastrophic gastroentero-logical emergency.Upper gastrointestinal(GI)endoscopy is currently regarded as the gold standard modality not only to assess the depth a... Caustic ingestion is a relatively rare but potentially catastrophic gastroentero-logical emergency.Upper gastrointestinal(GI)endoscopy is currently regarded as the gold standard modality not only to assess the depth and the extension of GI caustic injury,but also to guide the appropriate treatment.Intriguingly,contrast-enhanced computed tomography(CECT)has recently emerged as a promising non-invasive and more accurate alternative to endoscopy in this setting.However,to date,evidence concerning the role of CECT as an alternative or complementary diagnostic tool to endoscopy in caustic ingestion is still limited.The aim of our review was to summarize and discuss the current evidence concerning the role of CECT in the emergency diagnosis of caustic ingestion and its value in assessing injury severity among non-pediatric patients. 展开更多
关键词 Caustic ingestion Corrosive ingestion Contrast-enhanced computed tomo-graphy computed tomography ENDOSCOPY Upper gastrointestinal endoscopy
暂未订购
Quantum Inspired Adaptive Resource Management Algorithm for Scalable and Energy Efficient Fog Computing in Internet of Things(IoT)
10
作者 Sonia Khan Naqash Younas +3 位作者 Musaed Alhussein Wahib Jamal Khan Muhammad Shahid Anwar Khursheed Aurangzeb 《Computer Modeling in Engineering & Sciences》 2025年第3期2641-2660,共20页
Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resourc... Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments. 展开更多
关键词 Quantum computing resource management energy efficiency fog computing Internet of Things
在线阅读 下载PDF
Indoor Localization Using Multi-Bluetooth Beacon Deployment in a Sparse Edge Computing Environment
11
作者 Soheil Saghafi Yashar Kiarashi +3 位作者 Amy D.Rodriguez Allan I.Levey Hyeokhyen Kwon Gari D.Clifford 《Digital Twins and Applications》 2025年第1期49-56,共8页
Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength... Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength indicator(RSSI)measurements,influenced by physical obstacles,human presence,and electronic interference,poses a significant challenge to accurate localization.In this work,we present an optimised method to enhance indoor localization accuracy by utilising multiple BLE beacons in a radio frequency(RF)-dense modern building environment.Through a proof-of-concept study,we demonstrate that using three BLE beacons reduces localization error from a worst-case distance of 9.09-2.94 m,whereas additional beacons offer minimal incremental benefit in such settings.Furthermore,our framework for BLE-based localization,implemented on an edge network of Raspberry Pies,has been released under an open-source license,enabling broader application and further research. 展开更多
关键词 ambient health monitoring bluetooth low energy cloud computing edge computing indoor localization
在线阅读 下载PDF
Coded Distributed Computing for System with Stragglers
12
作者 Xu Jiasheng Kang Huquan +5 位作者 Zhang Haonan Fu Luoyi Long Fei Cao Xinde Wang Xinbing Zhou Chenghu 《China Communications》 2025年第8期298-313,共16页
Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing be... Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme. 展开更多
关键词 coded computation communication load distributed computing straggling effect
在线阅读 下载PDF
Flexible artificial vision computing system based on FeOx optomemristor for speech recognition
13
作者 Jie Li Yue Xin +6 位作者 Bai Sun Dengshun Gu Changrong Liao Xiaofang Hu Lidan Wang Shukai Duan Guangdong Zhou 《Journal of Semiconductors》 2025年第1期225-232,共8页
With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomem... With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomemristor based on C_(27)H_(30)O_(15)/FeOx heterostructure that presents a highly sensitive to the light stimuli and artificial optic synaptic features such as short-and long-term plasticity(STP and LTP),enabling the developed optomemristor to implement complex analogy signal processing through building a real-physical dynamic-based in-sensing reservoir computing algorithm and yielding an accuracy of 94.88%for speech recognition.The charge trapping and detrapping mediated by the optic active layer of C_(27)H_(30)O_(15) that is extracted from the lotus flower is response for the positive photoconductance memory in the prepared optomemristor.This work provides a feasible organic−inorganic heterostructure as well as an optic in-sensing vision computing for an advanced optic computing system in future complex signal processing. 展开更多
关键词 reservoir computing flexible optomemristor analogy signal processing optic computing
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
14
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
Accelerating Hartree-Fock Self-consistent Field Calculation on C86/DCU Heterogenous Computing Platform
15
作者 Ji Qi Huimin Zhang +1 位作者 Dezun Shan Minghui Yang 《Chinese Journal of Chemical Physics》 2025年第1期81-94,I0056,共15页
In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep compu... In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep computing unit)heterogeneous computing platform.Multiple hybrid parallel schemes are assessed using a range of model systems,including those with up to 1200 atoms and 10000 basis func-tions.The findings of our research reveal that,during Hartree-Fock(HF)calculations,a single DCU ex-hibits 33.6 speedups over 32 C86 CPU cores.Compared with the efficiency of Wuhan Electronic Structure Package on Intel X86 and NVIDIA A100 computing platform,the Hygon platform exhibits good cost-effective-ness,showing great potential in quantum chemistry calculation and other high-performance scientific computations. 展开更多
关键词 Quantum chemistry Self-consistent field HARTREE-FOCK Electron repulsion inte-grals Heterogenous parallel computing C86/deep computing unit
在线阅读 下载PDF
Joint offloading decision and resource allocation in vehicular edge computing networks
16
作者 Shumo Wang Xiaoqin Song +3 位作者 Han Xu Tiecheng Song Guowei Zhang Yang Yang 《Digital Communications and Networks》 2025年第1期71-82,共12页
With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications a... With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay. 展开更多
关键词 computation offloading Resource allocation Vehicular edge computing Potential game Multi-agent deep deterministic policy gradient
在线阅读 下载PDF
AMulti-Objective Joint Task Offloading Scheme for Vehicular Edge Computing
17
作者 Yiwei Zhang Xin Cui Qinghui Zhao 《Computers, Materials & Continua》 2025年第8期2355-2373,共19页
The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial veh... The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks. 展开更多
关键词 Vehicular edge computing cooperative game theory multi-objective optimization computation offloading
在线阅读 下载PDF
DDPG-Based Intelligent Computation Offloading and Resource Allocation for LEO Satellite Edge Computing Network
18
作者 Jia Min Wu Jian +2 位作者 Zhang Liang Wang Xinyu Guo Qing 《China Communications》 2025年第3期1-15,共15页
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t... Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms. 展开更多
关键词 computation offloading deep deterministic policy gradient low earth orbit satellite mobile edge computing resource allocation
在线阅读 下载PDF
Introduction to the Special Issue on Mathematical Aspects of Computational Biology and Bioinformatics-Ⅱ
19
作者 Dumitru Baleanu Carla M.A.Pinto Sunil Kumar 《Computer Modeling in Engineering & Sciences》 2025年第5期1297-1299,共3页
1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers ... 1 Summary Mathematical modeling has become a cornerstone in understanding the complex dynamics of infectious diseases and chronic health conditions.With the advent of more refined computational techniques,researchers are now able to incorporate intricate features such as delays,stochastic effects,fractional dynamics,variable-order systems,and uncertainty into epidemic models.These advancements not only improve predictive accuracy but also enable deeper insights into disease transmission,control,and policy-making.Tashfeen et al. 展开更多
关键词 computational techniquesresearchers effectsfractional dynamicsvariable order understanding complex dynamics infectious diseases chronic health conditionswith computational techniques mathematical modeling infectious diseases chronic health conditions DELAYS
暂未订购
A Two-Layer UAV Cooperative Computing Offloading Strategy Based on Deep Reinforcement Learning
20
作者 Zhang Jianfei Wang Zhen +1 位作者 Hu Yun Chang Zheng 《China Communications》 2025年第10期251-268,共18页
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi... In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy. 展开更多
关键词 cooperative computational offloading deep reinforcement learning mobile edge computing prioritized experience replay two-layer unmanned aerial vehicles
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部