The porosity of a rock is one of the most important reservoir properties. It controls the reservoir storage capacity. In other words, porosity quantifies the amount of fluids that the rock can store. Most of the world...The porosity of a rock is one of the most important reservoir properties. It controls the reservoir storage capacity. In other words, porosity quantifies the amount of fluids that the rock can store. Most of the world's giant fields produce hydrocarbons from carbonate reservoirs. Carbonate rocks contain more than 50% of the world's hydrocarbon reserves. Porosity and compressional wave velocity of 41 carbonate samples were determined under ambient conditions in laboratory. The samples were collected from seven shallow wells in west Tushka area, south Western Desert, Egypt. This paper evaluates the well known Wyllie and Raymer equations, an empirical linear equation, and a generalized model for porosity estimation from compressional wave velocity of saturated carbonate samples. Based on the comparison of the predicting identified to provide the most reliable porosity estimation. qualities, the Raymer equation and the empirical linear equation were展开更多
The transmission ratio along the radian direction normal to the joints was studied in the Universal Distinct Element Code (UDEC). The variation of the transmission ratio with the ratio of joint spacing to wavelength...The transmission ratio along the radian direction normal to the joints was studied in the Universal Distinct Element Code (UDEC). The variation of the transmission ratio with the ratio of joint spacing to wavelength was generalized into a general curve, which was determined by two critical points. The relationship between the two critical points and the affecting factors, quantity of joints and the normalized normal stiffness of joints, were obtained. A prediction model of the transmission ratio in the radian direction normal to the joints was proposed. The proposed model was applied to a field explosion test. The estimated values of the peak particle velocity from the prediction model were compared with the field records. The comparisons showed that the prediction model of the transmission ratio in the direction normal to the joints in the process of 2-D compressional wave propagation through multiple parallel joints is reliable.展开更多
We investigate the diffractive paraxial wave equation with an external potential,utilizing self-similarity and variable separation methods.The exact solution to this evolution equation,expressed through Scorer functio...We investigate the diffractive paraxial wave equation with an external potential,utilizing self-similarity and variable separation methods.The exact solution to this evolution equation,expressed through Scorer functions,gives rise to the new Scorer beams.We explore the dynamics of counterpropagating Scorer beams,as promising optical wave packets,focusing on their compression behavior.The Scorer beams are characterized by two key parameters:the attenuation factor and the initial pulse width.By appropriately adjusting these parameters,significant beam compression can be achieved.Specifically,increasing the attenuation factor enhances compression and raises pulse amplitude,while reducing the initial pulse width further amplifies these effects.Along the way,we observe interesting interference patterns of the counterpropagating Scorer beams that have never been seen before.This study introduces a novel approach to beam compression and opens new possibilities for practical applications of Scorer beams.展开更多
Compressional wave velocities in some Mesozoic and Cenozoic volcanic rocks from Qinling Dabie orogenic belt were measured at room temperature and high pressure (up to 4.5 GPa). Compressional wave velocities of these ...Compressional wave velocities in some Mesozoic and Cenozoic volcanic rocks from Qinling Dabie orogenic belt were measured at room temperature and high pressure (up to 4.5 GPa). Compressional wave velocities of these rocks increase with the increasing of pressure. The experiment data indicate that the pressure at which the microcracks in these rocks finally close is up to 2.0 GPa. The empirical relationships between compressional wave velocities at high pressure and oxide mass fractions, heat productions and densities at room temperature and 100 kPa of these rocks are discussed. It is likely that there does not always exist linear relationship between compressional wave velocities and oxide mass fractions. New heat production data of volcanic rock samples from the Qinling Dabie orogenic belt do not follow the empirical relationship between heat production and seismic velocity for rocks. It is dangerous to use these empirical relations to predicate the modal chemical composition, density and heat production of the lithosphere.展开更多
This paper describes the three phenomena observed in full wave experiments: 1. the amplitudes (absolute value) of the first compressional and shear arrivals have the same variation rules; 2. the phases of the first...This paper describes the three phenomena observed in full wave experiments: 1. the amplitudes (absolute value) of the first compressional and shear arrivals have the same variation rules; 2. the phases of the first compressional and shear arrivals are always opposite to each other; and 3. the amplitude variation periods of the first compressional and shear arrivals are 2π. A full analysis and interpretation points out that these phenomena should appear under the full wave logging condition. Hence,the basis of using phase diffrences to extract useful information from the full wave is found.展开更多
Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional a...This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.展开更多
In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points betwee...In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.展开更多
The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-...The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-situ temperature and pressure conditions.Two kinds of low-density oils(0.691 and 0.749 g/cm^3) and two kinds of high-density oils(0.834 and 0.873 g/cm^3) were used to saturate the rock samples at different oil-saturation states,and the saturated P- and S-wave velocities were measured.Through Gassmann's equation,the theoretical P- and S-wave velocities were also calculated by the fluid replacement method.With the comparison of the measured values and the theoretical values, this study comes to the following conclusions.(1) With the increase of oil saturation and the decrease of water saturation,the P-wave velocity of rock samples saturated by low-density oil increases and the changing rule is in accord with the effective fluid theory;the P-wave velocity of rock samples saturated by high-density oil decreases and the changing rule goes against the theory.(2) With the increase of oil density(namely 0.691→0.749→0.834→0.873 g/cm^3) when oil saturation is unchanged,P-wave velocity increases gradually.(3) The S-wave velocity is always stable and is not affected by the change of oil density and saturation.The results can be used to constrain pre-stack seismic inversion,and the variation rule of sonic wave velocity is valuable for hydrocarbon identification in the study area.展开更多
Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils ...Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils changes the soil matrix from a particulate media to a continuum. The goal of this study is to investigate the cyclic freezing and thawing effects on elastic waves. Sand-silt mixtures with 10% silt fraction in weight and 40% saturation are prepared. The sand-silt mixtures are placed in a nylon cell, onto which a pair of bender elements and a pair of piezoelectric disk elements are installed for the measurement of shear and compressional waves, respectively. The temperature of the mixtures decreases from 20 ℃ to -10 ℃ to freezing. The frozen sample is gradually thawed at room temperature (20 ℃), These freezing-thawing processes are repeated three times. The test result shows that the shear and compressional wave velocities significantly increase when the specimen is frozen. When the temperature is greater than 0 ℃, the elastic wave velocities are lower during thawing than during freezing due to soil structure change. This study demonstrates that soil strucre change during the winter season may be effectively estimated from elastic waves.展开更多
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heat...In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.展开更多
Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processin...Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.展开更多
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done i...An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.展开更多
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehic...Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics.展开更多
Until now, nerve conduction has been described on the basis of equivalent circuit model and cable theory, both of which supposed closed electric circuits spreading inside and outside the axoplasm. With these conventio...Until now, nerve conduction has been described on the basis of equivalent circuit model and cable theory, both of which supposed closed electric circuits spreading inside and outside the axoplasm. With these conventional models, we can simulate the propagating pattern of action potential along the axonal membrane based on Ohm's law and Kirchhoff's law. However, we could not fully explain the different conductive patterns in unmyelinated and myelinated nerves with these theories. Also, whether we can really suppose closed electrical circuits in the actual site of the nerves or not has not been fully discussed yet. In this report, a recently introduced new theoretical model of nerve conduction based on electrostatic molecular interactions within the axoplasm will be reviewed. With this new approach, we can explain the different conductive patterns in unmyelinated and myelinated nerves. This new mathematical conductive model based on electrostatic compressional wave in the intracellular fluid may also be able to explain the signal integration in the neuronal cell body and the back-propagation mechanism from the axons to the dendrites. With this new mathematical nerve conduction model based on electrostatic molecular interactions within the intracellular fluid, we may be able to achieve an integrated explanation for the physiological phenomena taking place in the nervous system.展开更多
On July 4, 2006, an earthquake of MS5.1 took place in Wen’an, Hebei Province, just at the south center of China’s Capital Circle area digital seismograph network. It is the strongest event recorded ever since the ne...On July 4, 2006, an earthquake of MS5.1 took place in Wen’an, Hebei Province, just at the south center of China’s Capital Circle area digital seismograph network. It is the strongest event recorded ever since the network went into operation in 2002. We processed the vast amounts of phase data yielded by the 107 digital seismic stations between 2002~2007 using Wadati method. In order to improve the precision and stability of shear and compressional wave velocities (vP/vS) calculation, we impose a number of restrictions on the computation environment and condition, e.g., the earthquakes are densely concentrated, selected stations are limited in range, the number of stations in- volved in the computation is larger than 5 and linear fitting features high precision and small error. Under these restrictions, the study shows that vP/vS in and around Wen’an and Tangshan underwent a normal-low-normal proc- ess one year before Wen’an earthquake, vP/vS became obviously low and the low ratio lasted for about one year, meanwhile, little variation of vP/vS was seen in Xingtai, northwest of Beijing, southwest of Beijing, Beijing-Tianjin and Beijing; after the quake, the vP/vS returned normal in Wen’an and Tangshan. Error and stability analysis of the calculated result for vP/vS shows it is convincible that anomaly appeared in and around Wen’an and Tangshan be- fore Wen’an earthquake.展开更多
Shale gas is becoming an important energy source worldwide. The geomechanical properties of shalerocks can have a major impact on the efficiency of shale gas exploration. This paper studied themineralogical and mechan...Shale gas is becoming an important energy source worldwide. The geomechanical properties of shalerocks can have a major impact on the efficiency of shale gas exploration. This paper studied themineralogical and mechanical characteristics of a typical gas shale in Ohio, USA. Scanning electron microscope(SEM) with energy dispersive X-ray (EDX) analyses was employed to measure the microstructureand material composition of the shale rock. The anisotropic behaviors of shale rock, includingcompressive and tensile strengths, were experimentally measured. The characteristics of shale rock werealso studied by nondestructive wave speed measurements. The shale demonstrated strong anisotropicbehaviors with the tensile strengths perpendicular to the bedding plane around 300e360 times of thatparallel to bedding plane. Results of ultrasonic tests indicated that both compression and shear wavevelocities show strong anisotropic patterns. The compression wave speed was the smallest in the directionperpendicular to the bedding plane; while the shear wave speed was the smallest in the directionparallel to the bedding plane. The ratio of wave speed anisotropy is around 1.3e1.4 for compressionwave; the ratio of shear wave speed anisotropy is larger and more diverse compared with thecompression wave anisotropy. This might be related to the larger variability in the frictional adhesivestrength along bedding plane than the compressive adhesive strength. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
We studied the compressional wave event in Pc5 frequency range observed in the dawn-side magnetic equator on 9 March 1998 by Grad-Shafranov(GS) reconstruction method for the first time. To test the effectiveness of ap...We studied the compressional wave event in Pc5 frequency range observed in the dawn-side magnetic equator on 9 March 1998 by Grad-Shafranov(GS) reconstruction method for the first time. To test the effectiveness of application of GS method on Pc5 compressional wave, we benchmarked our procedure by applying it to a one-dimensional current sheet model first. Excluding the left-hand corners, the average error magnitude was less than 10%. The reconstruction of actual data showed that we obtained the 2-D map of compressional wave without suffering model constraints for the first time. The magnetic filed lines density cyclical changed, and the wavelength was about 2-4 times earth radius. The reconstructed magnetic topology had a shape very similar to the empirical 2-dimensional standing wave model proposed by the former workers. Besides, we also recovered the plasma thermal pressure and current density of the wave quantitatively.展开更多
The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations,aerodynamic drag characteristics and the“piston wind”effect.The m...The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations,aerodynamic drag characteristics and the“piston wind”effect.The method relies on a RNG k-εtwo-equation turbulence model.It is shown that although reducing the oblique slope can alleviate the pressure gradient resulting from initial compression waves at the tunnel entrance,the pressure fluctuations in the tunnel are barely affected;however,a large reduction of micro-pressure wave amplitudes is found outside the tunnel.In comparison to the case where no tunnel hood is present,the amplitudes of micro-pressure waves at 40 m from the tunnel reach an acceptable range.The aerodynamic drag of the head and tail fluctuates greatly while that of the intermediate region undergoes only limited variations when the high-speed train passes through the double-hat oblique tunnel.It is shown that the effects of the oblique slope of the portal on the aerodynamic drag can almost be ignored while the train speed plays an important role.展开更多
文摘The porosity of a rock is one of the most important reservoir properties. It controls the reservoir storage capacity. In other words, porosity quantifies the amount of fluids that the rock can store. Most of the world's giant fields produce hydrocarbons from carbonate reservoirs. Carbonate rocks contain more than 50% of the world's hydrocarbon reserves. Porosity and compressional wave velocity of 41 carbonate samples were determined under ambient conditions in laboratory. The samples were collected from seven shallow wells in west Tushka area, south Western Desert, Egypt. This paper evaluates the well known Wyllie and Raymer equations, an empirical linear equation, and a generalized model for porosity estimation from compressional wave velocity of saturated carbonate samples. Based on the comparison of the predicting identified to provide the most reliable porosity estimation. qualities, the Raymer equation and the empirical linear equation were
基金The work was partially supported by the Major State Basic Research Development Program of China (No. 2002CB412703).
文摘The transmission ratio along the radian direction normal to the joints was studied in the Universal Distinct Element Code (UDEC). The variation of the transmission ratio with the ratio of joint spacing to wavelength was generalized into a general curve, which was determined by two critical points. The relationship between the two critical points and the affecting factors, quantity of joints and the normalized normal stiffness of joints, were obtained. A prediction model of the transmission ratio in the radian direction normal to the joints was proposed. The proposed model was applied to a field explosion test. The estimated values of the peak particle velocity from the prediction model were compared with the field records. The comparisons showed that the prediction model of the transmission ratio in the direction normal to the joints in the process of 2-D compressional wave propagation through multiple parallel joints is reliable.
基金supported by the National Natural Science Foundation of China under Grant No.62275176the Natural Science Foundation of Guangdong Province,China,under Grant No.2022A1515010084+1 种基金by Key Projects of Basic Research and Applied Basic Research in Universities of Guangdong Province,China,under Grants Nos.2021ZDZX1118 and 2022ZDZX1079supported by the NPRP 13S-0121-200126 Project with the Qatar National Research Fund(a member of the Qatar Foundation).
文摘We investigate the diffractive paraxial wave equation with an external potential,utilizing self-similarity and variable separation methods.The exact solution to this evolution equation,expressed through Scorer functions,gives rise to the new Scorer beams.We explore the dynamics of counterpropagating Scorer beams,as promising optical wave packets,focusing on their compression behavior.The Scorer beams are characterized by two key parameters:the attenuation factor and the initial pulse width.By appropriately adjusting these parameters,significant beam compression can be achieved.Specifically,increasing the attenuation factor enhances compression and raises pulse amplitude,while reducing the initial pulse width further amplifies these effects.Along the way,we observe interesting interference patterns of the counterpropagating Scorer beams that have never been seen before.This study introduces a novel approach to beam compression and opens new possibilities for practical applications of Scorer beams.
文摘Compressional wave velocities in some Mesozoic and Cenozoic volcanic rocks from Qinling Dabie orogenic belt were measured at room temperature and high pressure (up to 4.5 GPa). Compressional wave velocities of these rocks increase with the increasing of pressure. The experiment data indicate that the pressure at which the microcracks in these rocks finally close is up to 2.0 GPa. The empirical relationships between compressional wave velocities at high pressure and oxide mass fractions, heat productions and densities at room temperature and 100 kPa of these rocks are discussed. It is likely that there does not always exist linear relationship between compressional wave velocities and oxide mass fractions. New heat production data of volcanic rock samples from the Qinling Dabie orogenic belt do not follow the empirical relationship between heat production and seismic velocity for rocks. It is dangerous to use these empirical relations to predicate the modal chemical composition, density and heat production of the lithosphere.
文摘This paper describes the three phenomena observed in full wave experiments: 1. the amplitudes (absolute value) of the first compressional and shear arrivals have the same variation rules; 2. the phases of the first compressional and shear arrivals are always opposite to each other; and 3. the amplitude variation periods of the first compressional and shear arrivals are 2π. A full analysis and interpretation points out that these phenomena should appear under the full wave logging condition. Hence,the basis of using phase diffrences to extract useful information from the full wave is found.
基金State Natural Science Foundation of China (10032040 and 49874013).
文摘Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.
基金Projects(50278057) supported by the National Natural Science Foundation of China project(2002CB412703) supported by Major State Basic Research Development Program of China
文摘In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.
基金supported by the Science and Technology Research Key Project of Ministry of Education (Grant No.109035)the National Natural Science Foundation Key Project(Grant No.40830423)the Key Project of Students Extra-curricular Science and Technology Research Program of Schlumberger(Grant No.SLBX0908)
文摘The relationship between fluid density and saturation and sonic wave velocity of rock samples taken from the WXS Depression in the South China Sea was studied by an oil-water replacement experiment under simulated in-situ temperature and pressure conditions.Two kinds of low-density oils(0.691 and 0.749 g/cm^3) and two kinds of high-density oils(0.834 and 0.873 g/cm^3) were used to saturate the rock samples at different oil-saturation states,and the saturated P- and S-wave velocities were measured.Through Gassmann's equation,the theoretical P- and S-wave velocities were also calculated by the fluid replacement method.With the comparison of the measured values and the theoretical values, this study comes to the following conclusions.(1) With the increase of oil saturation and the decrease of water saturation,the P-wave velocity of rock samples saturated by low-density oil increases and the changing rule is in accord with the effective fluid theory;the P-wave velocity of rock samples saturated by high-density oil decreases and the changing rule goes against the theory.(2) With the increase of oil density(namely 0.691→0.749→0.834→0.873 g/cm^3) when oil saturation is unchanged,P-wave velocity increases gradually.(3) The S-wave velocity is always stable and is not affected by the change of oil density and saturation.The results can be used to constrain pre-stack seismic inversion,and the variation rule of sonic wave velocity is valuable for hydrocarbon identification in the study area.
基金supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0005729)
文摘Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils changes the soil matrix from a particulate media to a continuum. The goal of this study is to investigate the cyclic freezing and thawing effects on elastic waves. Sand-silt mixtures with 10% silt fraction in weight and 40% saturation are prepared. The sand-silt mixtures are placed in a nylon cell, onto which a pair of bender elements and a pair of piezoelectric disk elements are installed for the measurement of shear and compressional waves, respectively. The temperature of the mixtures decreases from 20 ℃ to -10 ℃ to freezing. The frozen sample is gradually thawed at room temperature (20 ℃), These freezing-thawing processes are repeated three times. The test result shows that the shear and compressional wave velocities significantly increase when the specimen is frozen. When the temperature is greater than 0 ℃, the elastic wave velocities are lower during thawing than during freezing due to soil structure change. This study demonstrates that soil strucre change during the winter season may be effectively estimated from elastic waves.
基金supported by the National Natural Science Foundation of China(Grant No.11802137,11702143 and 11802039)the Fundamental Research Funds for the Central Universities(No.30919011259).
文摘In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.
基金This work has been partially performed under the financial supports from the National Natural Science Foundation of China (Grant No.50204004)the National Fundamental Research Project - new generation steel research project of China (Grant No.G1998061
文摘Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.
文摘An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
基金supported by the National Natural Science Foundation of China(Nos.12202011,12332014)China Postdoctoral Science Foundation(No.2022M710190).
文摘Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics.
文摘Until now, nerve conduction has been described on the basis of equivalent circuit model and cable theory, both of which supposed closed electric circuits spreading inside and outside the axoplasm. With these conventional models, we can simulate the propagating pattern of action potential along the axonal membrane based on Ohm's law and Kirchhoff's law. However, we could not fully explain the different conductive patterns in unmyelinated and myelinated nerves with these theories. Also, whether we can really suppose closed electrical circuits in the actual site of the nerves or not has not been fully discussed yet. In this report, a recently introduced new theoretical model of nerve conduction based on electrostatic molecular interactions within the axoplasm will be reviewed. With this new approach, we can explain the different conductive patterns in unmyelinated and myelinated nerves. This new mathematical conductive model based on electrostatic compressional wave in the intracellular fluid may also be able to explain the signal integration in the neuronal cell body and the back-propagation mechanism from the axons to the dendrites. With this new mathematical nerve conduction model based on electrostatic molecular interactions within the intracellular fluid, we may be able to achieve an integrated explanation for the physiological phenomena taking place in the nervous system.
基金Special Fund for Basic Scientific Research, IGPCEA (DQJB06B03)National Program for Key Science and Technology Projects during the 11th Five-year Plan Period (2006BAC01B03-04-04)Contribution No.08FE3004, Institute of Geophysics, China Earthquake Administration.
文摘On July 4, 2006, an earthquake of MS5.1 took place in Wen’an, Hebei Province, just at the south center of China’s Capital Circle area digital seismograph network. It is the strongest event recorded ever since the network went into operation in 2002. We processed the vast amounts of phase data yielded by the 107 digital seismic stations between 2002~2007 using Wadati method. In order to improve the precision and stability of shear and compressional wave velocities (vP/vS) calculation, we impose a number of restrictions on the computation environment and condition, e.g., the earthquakes are densely concentrated, selected stations are limited in range, the number of stations in- volved in the computation is larger than 5 and linear fitting features high precision and small error. Under these restrictions, the study shows that vP/vS in and around Wen’an and Tangshan underwent a normal-low-normal proc- ess one year before Wen’an earthquake, vP/vS became obviously low and the low ratio lasted for about one year, meanwhile, little variation of vP/vS was seen in Xingtai, northwest of Beijing, southwest of Beijing, Beijing-Tianjin and Beijing; after the quake, the vP/vS returned normal in Wen’an and Tangshan. Error and stability analysis of the calculated result for vP/vS shows it is convincible that anomaly appeared in and around Wen’an and Tangshan be- fore Wen’an earthquake.
文摘Shale gas is becoming an important energy source worldwide. The geomechanical properties of shalerocks can have a major impact on the efficiency of shale gas exploration. This paper studied themineralogical and mechanical characteristics of a typical gas shale in Ohio, USA. Scanning electron microscope(SEM) with energy dispersive X-ray (EDX) analyses was employed to measure the microstructureand material composition of the shale rock. The anisotropic behaviors of shale rock, includingcompressive and tensile strengths, were experimentally measured. The characteristics of shale rock werealso studied by nondestructive wave speed measurements. The shale demonstrated strong anisotropicbehaviors with the tensile strengths perpendicular to the bedding plane around 300e360 times of thatparallel to bedding plane. Results of ultrasonic tests indicated that both compression and shear wavevelocities show strong anisotropic patterns. The compression wave speed was the smallest in the directionperpendicular to the bedding plane; while the shear wave speed was the smallest in the directionparallel to the bedding plane. The ratio of wave speed anisotropy is around 1.3e1.4 for compressionwave; the ratio of shear wave speed anisotropy is larger and more diverse compared with thecompression wave anisotropy. This might be related to the larger variability in the frictional adhesivestrength along bedding plane than the compressive adhesive strength. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘We studied the compressional wave event in Pc5 frequency range observed in the dawn-side magnetic equator on 9 March 1998 by Grad-Shafranov(GS) reconstruction method for the first time. To test the effectiveness of application of GS method on Pc5 compressional wave, we benchmarked our procedure by applying it to a one-dimensional current sheet model first. Excluding the left-hand corners, the average error magnitude was less than 10%. The reconstruction of actual data showed that we obtained the 2-D map of compressional wave without suffering model constraints for the first time. The magnetic filed lines density cyclical changed, and the wavelength was about 2-4 times earth radius. The reconstructed magnetic topology had a shape very similar to the empirical 2-dimensional standing wave model proposed by the former workers. Besides, we also recovered the plasma thermal pressure and current density of the wave quantitatively.
基金supported by the National Natural Science Foundation of China,China Grant(11972028),under the project“Analysis of Unsteady Aerodynamic Characteristics of High-Speed Train”。
文摘The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations,aerodynamic drag characteristics and the“piston wind”effect.The method relies on a RNG k-εtwo-equation turbulence model.It is shown that although reducing the oblique slope can alleviate the pressure gradient resulting from initial compression waves at the tunnel entrance,the pressure fluctuations in the tunnel are barely affected;however,a large reduction of micro-pressure wave amplitudes is found outside the tunnel.In comparison to the case where no tunnel hood is present,the amplitudes of micro-pressure waves at 40 m from the tunnel reach an acceptable range.The aerodynamic drag of the head and tail fluctuates greatly while that of the intermediate region undergoes only limited variations when the high-speed train passes through the double-hat oblique tunnel.It is shown that the effects of the oblique slope of the portal on the aerodynamic drag can almost be ignored while the train speed plays an important role.