当前,我国东部部分沿海地区已形成了规模化的新能源发电集群,海上风电场已从长距离放射形接入电网的形式,逐渐发展为登陆后近距离汇聚再接入主网的接线形式。沿用传统单风电场接入系统的无功电压灵敏度方式响应自动电压控制(automatic v...当前,我国东部部分沿海地区已形成了规模化的新能源发电集群,海上风电场已从长距离放射形接入电网的形式,逐渐发展为登陆后近距离汇聚再接入主网的接线形式。沿用传统单风电场接入系统的无功电压灵敏度方式响应自动电压控制(automatic voltage control, AVC)主站电压指令的运行过程中,易引发局部电网电压异常波动。为此提出了一种风电集群AVC子站无功电压灵敏度协同控制策略。考虑各风电场的交互关系,推导了多种风电集群并网拓扑形式下AVC子站无功电压灵敏度计算方法,并提出了解耦的AVC子站无功电压灵敏度协同控制策略;进一步,具体分析了不同子站无功源出力分配方式下的场内网损。基于MATLAB/MATPOWER平台搭建了三种典型风电集群汇聚模型并对比验证了算法的有效性。算例结果表明,相比传统无功电压灵敏度算法,所提算法能够调节风电集群无功出力以平稳有效应对AVC主站电压指令,在电压偏差指令变化、拓扑结构变化和风电出力水平不同条件下均能够较好地实现各子站并网点电压偏差控制,维持电网电压稳定运行。展开更多
自动发电控制(Automatic Generation Control,AGC)和自动电压控制系统(Automatic Voltage Control,AVC)是水电站的两个核心应用,分别维持着电力系统的频率稳定和电压稳定。在实际运行过程中,厂站AGC、AVC系统会呈现出不稳定或频繁退出...自动发电控制(Automatic Generation Control,AGC)和自动电压控制系统(Automatic Voltage Control,AVC)是水电站的两个核心应用,分别维持着电力系统的频率稳定和电压稳定。在实际运行过程中,厂站AGC、AVC系统会呈现出不稳定或频繁退出的问题,以铜街子水电站真实事件和实际数据为例,分别剖析AGC、AVC历次退出原因,针对AVC运算时调度电压设定值与实发差值过大以及全厂振动区不能根据实时负荷进行自动切换上送省调而导致全厂AGC退出的缺陷,分别给出两种原因下AGC、AVC退出的优化策略。实验证明,调整后的策略解决了全厂AGC、AVC退出问题,满足机组安全稳定运行,提升了机组经济运行水平,为水电站运维人员处理类似故障提供参考。展开更多
水电站自动电压控制(Automatic Voltage Control,AVC)能根据电网调度下发的高压母线电压目标值自动调节发电机组无功功率。对水电站自动电压控制在运行中遇到的问题进行原因分析,包括母线电压调节不能进入死区、母线电压波动大而发电机...水电站自动电压控制(Automatic Voltage Control,AVC)能根据电网调度下发的高压母线电压目标值自动调节发电机组无功功率。对水电站自动电压控制在运行中遇到的问题进行原因分析,包括母线电压调节不能进入死区、母线电压波动大而发电机组无功调节动作频繁、全厂事故总信号误动以及无功调节超时、拒动导致全厂AVC退出等问题,并提出优化意见。展开更多
The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics ...The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content.展开更多
The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at c...The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at current density of 60 A/mm^(2) and strain rate of 0.1 s^(−1),the ultimate tensile stress shows a significant decrease from approximately 3000 MPa to 1900 MPa with reduction ratio of about 36.7%.However,as current density increases,elongation decreases due to intermediate temperature embrittlement.This is because the current induces Joule effect,which then leads to stress concentration and more defect formation.Moreover,the flow stress is decreased with the increase in strain rate at constant current density.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the...AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength.展开更多
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da...Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.展开更多
为优化新型电力系统运行,提高电能质量,探讨自动电压控制(automatic voltage control, AVC)系统在新型电力系统中的应用。分析新型电力系统的多元性与复杂性、电网频率与电压控制的挑战及AVC系统应用的必要性,进一步探讨AVC系统在智能...为优化新型电力系统运行,提高电能质量,探讨自动电压控制(automatic voltage control, AVC)系统在新型电力系统中的应用。分析新型电力系统的多元性与复杂性、电网频率与电压控制的挑战及AVC系统应用的必要性,进一步探讨AVC系统在智能电网、长距离输电与城市电网、新能源场站、分布式电源集群与多能互补系统中的具体应用,同时分析其面临的新能源接入、电网形态变化、数据采集处理等挑战及解决方案,以供参考。展开更多
With the increase in the quantity and scale of Static Random-Access Memory Field Programmable Gate Arrays (SRAM-based FPGAs) for aerospace application, the volume of FPGA configuration bit files that must be stored ha...With the increase in the quantity and scale of Static Random-Access Memory Field Programmable Gate Arrays (SRAM-based FPGAs) for aerospace application, the volume of FPGA configuration bit files that must be stored has increased dramatically. The use of compression techniques for these bitstream files is emerging as a key strategy to alleviate the burden on storage resources. Due to the severe resource constraints of space-based electronics and the unique application environment, the simplicity, efficiency and robustness of the decompression circuitry is also a key design consideration. Through comparative analysis current bitstream file compression technologies, this research suggests that the Lempel Ziv Oberhumer (LZO) compression algorithm is more suitable for satellite applications. This paper also delves into the compression process and format of the LZO compression algorithm, as well as the inherent characteristics of configuration bitstream files. We propose an improved algorithm based on LZO for bitstream file compression, which optimises the compression process by refining the format and reducing the offset. Furthermore, a low-cost, robust decompression hardware architecture is proposed based on this method. Experimental results show that the compression speed of the improved LZO algorithm is increased by 3%, the decompression hardware cost is reduced by approximately 60%, and the compression ratio is slightly reduced by 0.47%.展开更多
Robotics plays an increasingly important role in all areas of human activity.Teleoperation robots can effectively ensure the safety of operators when operating in difficult and high‐risk industrial scenarios,which ob...Robotics plays an increasingly important role in all areas of human activity.Teleoperation robots can effectively ensure the safety of operators when operating in difficult and high‐risk industrial scenarios,which obviously requires instant and efficient signal compression and transmission in the system.However,most of the existing algorithms cannot fully explore the correlation within the signal,which mostly limits the compression efficiency.In this paper,a novel prediction‐aided kinaestheticsignal compression framework is proposed,which uses semantic communication methods to explore the temporal and spatial correlations of signals and employs neural network predictions to uncover their internal correlations.Specifically,the signal is first divided into two groups:the base part and the predictable part,and then a series of transformation matrices are introduced to establish the correlation between the two groups of the signal,which can be automatically optimised by a well‐designed neural network.This strategy of using learnable transformation matrices for prediction can not only accurately construct the correlation within the signal through massive data mining but also efficiently execute inference in a simple matrix multiplication computing form.Experimental results demonstrate that the proposed method outperforms the existing traditional tactile codecs and the latest tactile semantic communication methods.展开更多
文摘当前,我国东部部分沿海地区已形成了规模化的新能源发电集群,海上风电场已从长距离放射形接入电网的形式,逐渐发展为登陆后近距离汇聚再接入主网的接线形式。沿用传统单风电场接入系统的无功电压灵敏度方式响应自动电压控制(automatic voltage control, AVC)主站电压指令的运行过程中,易引发局部电网电压异常波动。为此提出了一种风电集群AVC子站无功电压灵敏度协同控制策略。考虑各风电场的交互关系,推导了多种风电集群并网拓扑形式下AVC子站无功电压灵敏度计算方法,并提出了解耦的AVC子站无功电压灵敏度协同控制策略;进一步,具体分析了不同子站无功源出力分配方式下的场内网损。基于MATLAB/MATPOWER平台搭建了三种典型风电集群汇聚模型并对比验证了算法的有效性。算例结果表明,相比传统无功电压灵敏度算法,所提算法能够调节风电集群无功出力以平稳有效应对AVC主站电压指令,在电压偏差指令变化、拓扑结构变化和风电出力水平不同条件下均能够较好地实现各子站并网点电压偏差控制,维持电网电压稳定运行。
文摘自动发电控制(Automatic Generation Control,AGC)和自动电压控制系统(Automatic Voltage Control,AVC)是水电站的两个核心应用,分别维持着电力系统的频率稳定和电压稳定。在实际运行过程中,厂站AGC、AVC系统会呈现出不稳定或频繁退出的问题,以铜街子水电站真实事件和实际数据为例,分别剖析AGC、AVC历次退出原因,针对AVC运算时调度电压设定值与实发差值过大以及全厂振动区不能根据实时负荷进行自动切换上送省调而导致全厂AGC退出的缺陷,分别给出两种原因下AGC、AVC退出的优化策略。实验证明,调整后的策略解决了全厂AGC、AVC退出问题,满足机组安全稳定运行,提升了机组经济运行水平,为水电站运维人员处理类似故障提供参考。
文摘水电站自动电压控制(Automatic Voltage Control,AVC)能根据电网调度下发的高压母线电压目标值自动调节发电机组无功功率。对水电站自动电压控制在运行中遇到的问题进行原因分析,包括母线电压调节不能进入死区、母线电压波动大而发电机组无功调节动作频繁、全厂事故总信号误动以及无功调节超时、拒动导致全厂AVC退出等问题,并提出优化意见。
基金supported by the National Natural Science Foundation of China(Grant Nos.42372312,and 42172299)the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(Grant No.JDYC20220807).
文摘The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content.
基金National Natural Science Foundation of China(52305349)Heilongjiang Touyan Team(HITTY-20190036)+2 种基金Heilongjiang Provincial Natural Science Foundation of China(LH2023E033)CGN-HIT Advanced Nuclear and New Energy Research Institute(CGN-HIT202305)Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0518)。
文摘The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at current density of 60 A/mm^(2) and strain rate of 0.1 s^(−1),the ultimate tensile stress shows a significant decrease from approximately 3000 MPa to 1900 MPa with reduction ratio of about 36.7%.However,as current density increases,elongation decreases due to intermediate temperature embrittlement.This is because the current induces Joule effect,which then leads to stress concentration and more defect formation.Moreover,the flow stress is decreased with the increase in strain rate at constant current density.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金National Natural Science Foundation of China(52275308,52301146)Fundamental Research Funds for the Central Universities(2023JG007)Supported by Shi Changxu Innovation Center for Advanced Materials(SCXKFJJ202207)。
文摘AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field.
文摘为优化新型电力系统运行,提高电能质量,探讨自动电压控制(automatic voltage control, AVC)系统在新型电力系统中的应用。分析新型电力系统的多元性与复杂性、电网频率与电压控制的挑战及AVC系统应用的必要性,进一步探讨AVC系统在智能电网、长距离输电与城市电网、新能源场站、分布式电源集群与多能互补系统中的具体应用,同时分析其面临的新能源接入、电网形态变化、数据采集处理等挑战及解决方案,以供参考。
基金supported in part by the National Key Laboratory of Science and Technology on Space Microwave(Grant Nos.HTKJ2022KL504009 and HTKJ2022KL5040010).
文摘With the increase in the quantity and scale of Static Random-Access Memory Field Programmable Gate Arrays (SRAM-based FPGAs) for aerospace application, the volume of FPGA configuration bit files that must be stored has increased dramatically. The use of compression techniques for these bitstream files is emerging as a key strategy to alleviate the burden on storage resources. Due to the severe resource constraints of space-based electronics and the unique application environment, the simplicity, efficiency and robustness of the decompression circuitry is also a key design consideration. Through comparative analysis current bitstream file compression technologies, this research suggests that the Lempel Ziv Oberhumer (LZO) compression algorithm is more suitable for satellite applications. This paper also delves into the compression process and format of the LZO compression algorithm, as well as the inherent characteristics of configuration bitstream files. We propose an improved algorithm based on LZO for bitstream file compression, which optimises the compression process by refining the format and reducing the offset. Furthermore, a low-cost, robust decompression hardware architecture is proposed based on this method. Experimental results show that the compression speed of the improved LZO algorithm is increased by 3%, the decompression hardware cost is reduced by approximately 60%, and the compression ratio is slightly reduced by 0.47%.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Grants 62302128 and 624B2049)supported by Shenzhen Science and Technology Innovation Committee(Grant RCBS20231211090749086).
文摘Robotics plays an increasingly important role in all areas of human activity.Teleoperation robots can effectively ensure the safety of operators when operating in difficult and high‐risk industrial scenarios,which obviously requires instant and efficient signal compression and transmission in the system.However,most of the existing algorithms cannot fully explore the correlation within the signal,which mostly limits the compression efficiency.In this paper,a novel prediction‐aided kinaestheticsignal compression framework is proposed,which uses semantic communication methods to explore the temporal and spatial correlations of signals and employs neural network predictions to uncover their internal correlations.Specifically,the signal is first divided into two groups:the base part and the predictable part,and then a series of transformation matrices are introduced to establish the correlation between the two groups of the signal,which can be automatically optimised by a well‐designed neural network.This strategy of using learnable transformation matrices for prediction can not only accurately construct the correlation within the signal through massive data mining but also efficiently execute inference in a simple matrix multiplication computing form.Experimental results demonstrate that the proposed method outperforms the existing traditional tactile codecs and the latest tactile semantic communication methods.