This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performe...This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.展开更多
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ...The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.展开更多
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati...The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.展开更多
Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’...Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’s edge.However,the complexity of model conversion techniques,diverse inference mechanisms,and varied learning strategies make designing and deploying these models challenging.Additionally,deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors.These factors underscore the necessity for a comprehensive literature review,as current reviews do not systematically encompass the most recent findings on these topics.Consequently,it provides a comprehensive overview of state-of-the-art techniques in model conversion,inference mechanisms,learning strategies within EdgeML,and deploying these models on resource-constrained edge devices using TinyML.It identifies 90 research articles published between 2018 and 2025,categorizing them into two main areas:(1)model conversion,inference,and learning strategies in EdgeML and(2)deploying TinyML models on resource-constrained hardware using specific software frameworks.In the first category,the synthesis of selected research articles compares and critically reviews various model conversion techniques,inference mechanisms,and learning strategies.In the second category,the synthesis identifies and elaborates on major development boards,software frameworks,sensors,and algorithms used in various applications across six major sectors.As a result,this article provides valuable insights for researchers,practitioners,and developers.It assists them in choosing suitable model conversion techniques,inference mechanisms,learning strategies,hardware development boards,software frameworks,sensors,and algorithms tailored to their specific needs and applications across various sectors.展开更多
Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,...Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance.展开更多
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des...3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems.展开更多
Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynami...Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.展开更多
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ...Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
Deep neural networks excel at image identification and computer vision applications such as visual product search, facial recognition, medical image analysis, object detection, semantic segmentation,instance segmentat...Deep neural networks excel at image identification and computer vision applications such as visual product search, facial recognition, medical image analysis, object detection, semantic segmentation,instance segmentation, and many others. In image and video recognition applications, convolutional neural networks(CNNs) are widely employed. These networks provide better performance but at a higher cost of computation. With the advent of big data, the growing scale of datasets has made processing and model training a time-consuming operation, resulting in longer training times. Moreover, these large scale datasets contain redundant data points that have minimum impact on the final outcome of the model. To address these issues, an accelerated CNN system is proposed for speeding up training by eliminating the noncritical data points during training alongwith a model compression method. Furthermore, the identification of the critical input data is performed by aggregating the data points at two levels of granularity which are used for evaluating the impact on the model output.Extensive experiments are conducted using the proposed method on CIFAR-10 dataset on ResNet models giving a 40% reduction in number of FLOPs with a degradation of just 0.11% accuracy.展开更多
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N...Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.展开更多
Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in t...Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in the teacher model during the distillation process still persists.To address the inherent biases in knowledge distillation,we propose a de-biased knowledge distillation framework tailored for binary classification tasks.For the pre-trained teacher model,biases in the soft labels are mitigated through knowledge infusion and label de-biasing techniques.Based on this,a de-biased distillation loss is introduced,allowing the de-biased labels to replace the soft labels as the fitting target for the student model.This approach enables the student model to learn from the corrected model information,achieving high-performance deployment on lightweight student models.Experiments conducted on multiple real-world datasets demonstrate that deep learning models compressed under the de-biased knowledge distillation framework significantly outperform traditional response-based and feature-based knowledge distillation models across various evaluation metrics,highlighting the effectiveness and superiority of the de-biased knowledge distillation framework in model compression.展开更多
Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro...Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme.展开更多
Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices...Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.展开更多
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ...Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.展开更多
BACKGROUND: Varying degrees of inflammatory responses occur during lumbar nerve root compression. Studies have shown that nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) are involved in sec...BACKGROUND: Varying degrees of inflammatory responses occur during lumbar nerve root compression. Studies have shown that nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) are involved in secondary disc inflammation. OBJECTIVE: To observe the effects of warm acupuncture on the ultrastructure of inflammatory mediators in a rat model of lumbar nerve root compression, including NOS and CGRP contents. DESIGN, TIME AND SETTING: Randomized, controlled study, with molecular biological analysis, was performed at the Experimental Center, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, between September 2006 and April 2007. MATERIALS: Acupuncture needles and refined Moxa grains were purchased from Shanghai Taicheng Technology Development Co., Ltd., China; Mobic tablets were purchased from Shanghai Boehringer Ingelheim Pharmaceuticals Co., Ltd., China; enzyme linked immunosorbent assay (ELISA) kits for NOS and CGRP were purchased from ADL Biotechnology, Inc., USA. METHODS: A total of 50, healthy, adult Sprague-Dawley rats, were randomly divided into five groups normal, model, warm acupuncture, acupuncture, and drug, with 10 rats in each group. Rats in the four groups, excluding the normal group, were used to establish models of lumbar nerve root compression. After 3 days, Jiaji points were set using reinforcing-reducing manipulation in the warm acupuncture group. Moxa grains were burned on each needle, with 2 grains each daily. The acupuncture group was the same as the warm acupuncture group, with the exception of non-moxibustion. Mobic suspension (3.75 mg/kg) was used in the oral drug group, once a day. Treatment of each group lasted for 14 consecutive days. Modeling and medication were not performed in the normal group. MAIN OUTCOME MEASURES: The ultrastructure of damaged nerve roots was observed with transmission electron microscopy; NOS and CGRP contents were measured using ELISA. RESULTS: The changes of the radicular ultramicrostructure were characterized by Wallerian degeneration; nerve fibers were clearly demyelinated; axons collapsed or degenerated; outer Schwann cell cytoplasm was swollen and its nucleus was compacted. Compared with the normal group, NOS and CGRP contents in the nerve root compression zone in the model group were significantly increased (P 〈 0.01). Nerve root edema was improved in the drug, acupuncture and the warm acupuncture groups over the model group. NOS and CGRP expressions were also decreased with the warm acupuncture group having the lowest concentration (P 〈 0.01). CONCLUSION: In comparison to the known effects of Mobic drug and acupuncture treatments, the warm acupuncture significantly decreased NOS and CGRP expression which helped improve the ultrastructure of the compressed nerve root.展开更多
A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calcula...A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calculation.According to the requirement of airport object detection,the model obtains temporal and spatial semantic rules from the uncompressed model.These spatial semantic rules are added to the model after parameter compression to assist the detection.The rules can improve the accuracy of the detection model in order to make up for the loss caused by parameter compression.The experiments show that the effect of the novel compression detection model is no worse than that of the uncompressed original model.Even some of the original model false detection can be eliminated through the prior knowledge.展开更多
In this article, we consider the blowup criterion for the local strong solution to the compressible fluid-particle interaction model in dimension three with vacuum. We establish a BKM type criterion for possible break...In this article, we consider the blowup criterion for the local strong solution to the compressible fluid-particle interaction model in dimension three with vacuum. We establish a BKM type criterion for possible breakdown of such solutions at critical time in terms of both the L^∞ (0, T; L^6)-norm of the density of particles and the ^L1(0, T; L^∞)-norm of the deformation tensor of velocity gradient.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
A numerical simulation of shock wave turbulent boundary layer interaction induced by a 24° compression corner based on Gao-Yong compressible turbulence model was presented.The convection terms and the diffusion t...A numerical simulation of shock wave turbulent boundary layer interaction induced by a 24° compression corner based on Gao-Yong compressible turbulence model was presented.The convection terms and the diffusion terms were calculated using the second-order AUSM(advection upstream splitting method) scheme and the second-order central difference scheme,respectively.The Runge-Kutta time marching method was employed to solve the governing equations for steady state solutions.Significant flow separation-region which indicates highly non-isotropic turbulence structure has been found in the present work due to intensity interaction under the 24° compression corner.Comparisons between the calculated results and experimental data have been carried out,including surface pressure distribution,boundary-layer static pressure profiles and mean velocity profiles.The numerical results agree well with the experimental values,which indicate Gao-Yong compressible turbulence model is suitable for the prediction of shock wave turbulent boundary layer interaction in two-dimensional compression corner flows.展开更多
基金support from the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grant(Grant No.5808)received in 2019 for his research programsThe third author appreciates the funding from the National Natural Science Foundation of China(Grant No.52378365)Hubei Key Research&Development Program(Grant No.2023BCB112).
文摘This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.
文摘The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.
文摘The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.
文摘Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’s edge.However,the complexity of model conversion techniques,diverse inference mechanisms,and varied learning strategies make designing and deploying these models challenging.Additionally,deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors.These factors underscore the necessity for a comprehensive literature review,as current reviews do not systematically encompass the most recent findings on these topics.Consequently,it provides a comprehensive overview of state-of-the-art techniques in model conversion,inference mechanisms,learning strategies within EdgeML,and deploying these models on resource-constrained edge devices using TinyML.It identifies 90 research articles published between 2018 and 2025,categorizing them into two main areas:(1)model conversion,inference,and learning strategies in EdgeML and(2)deploying TinyML models on resource-constrained hardware using specific software frameworks.In the first category,the synthesis of selected research articles compares and critically reviews various model conversion techniques,inference mechanisms,and learning strategies.In the second category,the synthesis identifies and elaborates on major development boards,software frameworks,sensors,and algorithms used in various applications across six major sectors.As a result,this article provides valuable insights for researchers,practitioners,and developers.It assists them in choosing suitable model conversion techniques,inference mechanisms,learning strategies,hardware development boards,software frameworks,sensors,and algorithms tailored to their specific needs and applications across various sectors.
基金funded by National Natural Science Foundation of China(61603245).
文摘Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance.
文摘3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems.
基金supported in part by the Stable Support Research Project of AECC Sichuan Gas Turbine Establishment,China(No.GJCZ-0013-19)the Open Foundation of State Key Laboratory of Compressor Technology,China(Compressor Technology Laboratory of Anhui Province)(No.SKL-YSJ2020007).
文摘Modeling of a centrifugal compressor is of great significance to surge characteristics and fluid dynamics in the Altitude Ground Test Facilities(AGTF).Real-time Modular Dynamic System Greitzer(MDSG)modeling for dynamic response and simulation of the compression system is introduced.The centrifugal compressor,pipeline network,and valve are divided into pressure output type and mass flow output type for module modeling,and the two types of components alternate when the system is established.The pressure loss and thermodynamics of the system are considered.An air supply compression system of AGTF is modeled and simulated by the MDSG model.The simulation results of mass flow,pressure,and temperature are compared with the experimental results,and the error is less than 5%,which demonstrates the reliability,practicability,and universality of the MDSG model.
基金financially supported by the National Natural Science Foundation of China(Nos.51275415 and50905144)the Natural Science Basic Research Plan in Shanxi Province(No.2011JQ6004)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B08040)
文摘Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
文摘Deep neural networks excel at image identification and computer vision applications such as visual product search, facial recognition, medical image analysis, object detection, semantic segmentation,instance segmentation, and many others. In image and video recognition applications, convolutional neural networks(CNNs) are widely employed. These networks provide better performance but at a higher cost of computation. With the advent of big data, the growing scale of datasets has made processing and model training a time-consuming operation, resulting in longer training times. Moreover, these large scale datasets contain redundant data points that have minimum impact on the final outcome of the model. To address these issues, an accelerated CNN system is proposed for speeding up training by eliminating the noncritical data points during training alongwith a model compression method. Furthermore, the identification of the critical input data is performed by aggregating the data points at two levels of granularity which are used for evaluating the impact on the model output.Extensive experiments are conducted using the proposed method on CIFAR-10 dataset on ResNet models giving a 40% reduction in number of FLOPs with a degradation of just 0.11% accuracy.
基金supported by the National Natural Science Foundation of China(61170147)Scientific Research Project of Zhejiang Provincial Department of Education in China(Y202146796)+2 种基金Natural Science Foundation of Zhejiang Province in China(LTY22F020003)Wenzhou Major Scientific and Technological Innovation Project of China(ZG2021029)Scientific and Technological Projects of Henan Province in China(202102210172).
文摘Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.
基金supported by the National Natural Science Foundation of China under Grant No.62172056Young Elite Scientists Sponsorship Program by CAST under Grant No.2022QNRC001.
文摘Knowledge distillation,as a pivotal technique in the field of model compression,has been widely applied across various domains.However,the problem of student model performance being limited due to inherent biases in the teacher model during the distillation process still persists.To address the inherent biases in knowledge distillation,we propose a de-biased knowledge distillation framework tailored for binary classification tasks.For the pre-trained teacher model,biases in the soft labels are mitigated through knowledge infusion and label de-biasing techniques.Based on this,a de-biased distillation loss is introduced,allowing the de-biased labels to replace the soft labels as the fitting target for the student model.This approach enables the student model to learn from the corrected model information,achieving high-performance deployment on lightweight student models.Experiments conducted on multiple real-world datasets demonstrate that deep learning models compressed under the de-biased knowledge distillation framework significantly outperform traditional response-based and feature-based knowledge distillation models across various evaluation metrics,highlighting the effectiveness and superiority of the de-biased knowledge distillation framework in model compression.
基金This work was supported by Open Fund Project of State Key Laboratory of Intelligent Vehicle Safety Technology by Grant with No.IVSTSKL-202311Key Projects of Science and Technology Research Programme of Chongqing Municipal Education Commission by Grant with No.KJZD-K202301505+1 种基金Cooperation Project between Chongqing Municipal Undergraduate Universities and Institutes Affiliated to the Chinese Academy of Sciences in 2021 by Grant with No.HZ2021015Chongqing Graduate Student Research Innovation Program by Grant with No.CYS240801.
文摘Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme.
基金supported by the National Natural Science Foundation of China(62171088,U19A2052,62020106011)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(ZYGX2021YGLH215,ZYGX2022YGRH005)。
文摘Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.
基金supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.
基金Modern Projects of Traditional Chinese Medicine of Shanghai Science and Technology Commission, No.08DZ1973200Research Projects of Shanghai Bureau of Public Health,No.2006Q004L
文摘BACKGROUND: Varying degrees of inflammatory responses occur during lumbar nerve root compression. Studies have shown that nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) are involved in secondary disc inflammation. OBJECTIVE: To observe the effects of warm acupuncture on the ultrastructure of inflammatory mediators in a rat model of lumbar nerve root compression, including NOS and CGRP contents. DESIGN, TIME AND SETTING: Randomized, controlled study, with molecular biological analysis, was performed at the Experimental Center, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, between September 2006 and April 2007. MATERIALS: Acupuncture needles and refined Moxa grains were purchased from Shanghai Taicheng Technology Development Co., Ltd., China; Mobic tablets were purchased from Shanghai Boehringer Ingelheim Pharmaceuticals Co., Ltd., China; enzyme linked immunosorbent assay (ELISA) kits for NOS and CGRP were purchased from ADL Biotechnology, Inc., USA. METHODS: A total of 50, healthy, adult Sprague-Dawley rats, were randomly divided into five groups normal, model, warm acupuncture, acupuncture, and drug, with 10 rats in each group. Rats in the four groups, excluding the normal group, were used to establish models of lumbar nerve root compression. After 3 days, Jiaji points were set using reinforcing-reducing manipulation in the warm acupuncture group. Moxa grains were burned on each needle, with 2 grains each daily. The acupuncture group was the same as the warm acupuncture group, with the exception of non-moxibustion. Mobic suspension (3.75 mg/kg) was used in the oral drug group, once a day. Treatment of each group lasted for 14 consecutive days. Modeling and medication were not performed in the normal group. MAIN OUTCOME MEASURES: The ultrastructure of damaged nerve roots was observed with transmission electron microscopy; NOS and CGRP contents were measured using ELISA. RESULTS: The changes of the radicular ultramicrostructure were characterized by Wallerian degeneration; nerve fibers were clearly demyelinated; axons collapsed or degenerated; outer Schwann cell cytoplasm was swollen and its nucleus was compacted. Compared with the normal group, NOS and CGRP contents in the nerve root compression zone in the model group were significantly increased (P 〈 0.01). Nerve root edema was improved in the drug, acupuncture and the warm acupuncture groups over the model group. NOS and CGRP expressions were also decreased with the warm acupuncture group having the lowest concentration (P 〈 0.01). CONCLUSION: In comparison to the known effects of Mobic drug and acupuncture treatments, the warm acupuncture significantly decreased NOS and CGRP expression which helped improve the ultrastructure of the compressed nerve root.
文摘A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calculation.According to the requirement of airport object detection,the model obtains temporal and spatial semantic rules from the uncompressed model.These spatial semantic rules are added to the model after parameter compression to assist the detection.The rules can improve the accuracy of the detection model in order to make up for the loss caused by parameter compression.The experiments show that the effect of the novel compression detection model is no worse than that of the uncompressed original model.Even some of the original model false detection can be eliminated through the prior knowledge.
基金supported by the National Basic Research Program of China(973 Program)(2011CB808002)the National Natural Science Foundation of China(11371152,11128102,11071086,and 11571117)+3 种基金the Natural Science Foundation of Guangdong Province(S2012010010408)the Foundation for Distinguished Young Talents in Higher Education of Guangdong(2015KQNCX095)the Major Foundation of Hanshan Normal University(LZ201403)the Scientific Research Foundation of Graduate School of South China Normal University(2014ssxm04)
文摘In this article, we consider the blowup criterion for the local strong solution to the compressible fluid-particle interaction model in dimension three with vacuum. We establish a BKM type criterion for possible breakdown of such solutions at critical time in terms of both the L^∞ (0, T; L^6)-norm of the density of particles and the ^L1(0, T; L^∞)-norm of the deformation tensor of velocity gradient.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
文摘A numerical simulation of shock wave turbulent boundary layer interaction induced by a 24° compression corner based on Gao-Yong compressible turbulence model was presented.The convection terms and the diffusion terms were calculated using the second-order AUSM(advection upstream splitting method) scheme and the second-order central difference scheme,respectively.The Runge-Kutta time marching method was employed to solve the governing equations for steady state solutions.Significant flow separation-region which indicates highly non-isotropic turbulence structure has been found in the present work due to intensity interaction under the 24° compression corner.Comparisons between the calculated results and experimental data have been carried out,including surface pressure distribution,boundary-layer static pressure profiles and mean velocity profiles.The numerical results agree well with the experimental values,which indicate Gao-Yong compressible turbulence model is suitable for the prediction of shock wave turbulent boundary layer interaction in two-dimensional compression corner flows.