期刊文献+
共找到5,984篇文章
< 1 2 250 >
每页显示 20 50 100
Block sparse compressed sensing with frames:Null space property and l_(2)/l_(q)(0
1
作者 WU Fengong ZHONG Penghong QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期173-182,共10页
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ... This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise. 展开更多
关键词 compressed sensing block sparse l2/lq-synthesis method null space property
在线阅读 下载PDF
Primary Research of EIT Inverse Problem Based on CS (Compressed Sensing) Technique 被引量:1
2
作者 CHANG Tiantian DAI Meng XU Canhua FU Feng YOU Fusheng DONG Xiuzhen 《Journal of Mathematics and System Science》 2013年第1期41-46,共6页
EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linea... EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution. 展开更多
关键词 Electrical impedance tomography compressed sensing inverse problem REGULARIZATION sparse reconstruction.
在线阅读 下载PDF
Delay-Calibrated Compressed Sensing for MIMO-OFDM Channel Estimation with Inter-Cell Interference
3
作者 Ou Zhihao Jiang Wenjun +2 位作者 Yuan Xiaojun Wang Li Zuo Yong 《China Communications》 2025年第8期102-113,共12页
This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specificall... This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specifically,this paper focuses on both channel modelling and receiver design for interference estimation and mitigation.We propose a delay-calibrated block-wise linear model,which extracts the delay of the dominant tap of each interference as a key parameter and approximates the residual channel coefficients by the recently developed blockwise linear model.Based on the delay-calibrated block-wise linear model and the angle-domain channel sparsity,we further conceive a message passing algorithm to solve the channel estimation problem.Numerical results demonstrate the superior performance of the proposed algorithm over the state-of-the-art algorithms. 展开更多
关键词 channel estimation compressed sensing delay calibration inter-cell interference
在线阅读 下载PDF
Artificial intelligence-assisted compressed sensing CINE enhances the workflow of cardiac magnetic resonance in challenging patients
4
作者 Huaijun Wang Anne Schmieder +4 位作者 Mary Watkins Pengjun Wang Joshua Mitchell S Zyad Qamer Gregory Lanza 《World Journal of Cardiology》 2025年第7期172-187,共16页
BACKGROUND A key cardiac magnetic resonance(CMR)challenge is breath-holding duration,difficult for cardiac patients.AIM To evaluate whether artificial intelligence-assisted compressed sensing CINE(AICS-CINE)reduces im... BACKGROUND A key cardiac magnetic resonance(CMR)challenge is breath-holding duration,difficult for cardiac patients.AIM To evaluate whether artificial intelligence-assisted compressed sensing CINE(AICS-CINE)reduces image acquisition time of CMR compared to conventional CINE(C-CINE).METHODS Cardio-oncology patients(n=60)and healthy volunteers(n=29)underwent sequential C-CINE and AI-CS-CINE with a 1.5-T scanner.Acquisition time,visual image quality assessment,and biventricular metrics(end-diastolic volume,endsystolic volume,stroke volume,ejection fraction,left ventricular mass,and wall thickness)were analyzed and compared between C-CINE and AI-CS-CINE with Bland–Altman analysis,and calculation of intraclass coefficient(ICC).RESULTS In 89 participants(58.5±16.8 years,42 males,47 females),total AI-CS-CINE acquisition and reconstruction time(37 seconds)was 84%faster than C-CINE(238 seconds).C-CINE required repeats in 23%(20/89)of cases(approximately 8 minutes lost),while AI-CS-CINE only needed one repeat(1%;2 seconds lost).AICS-CINE had slightly lower contrast but preserved structural clarity.Bland-Altman plots and ICC(0.73≤r≤0.98)showed strong agreement for left ventricle(LV)and right ventricle(RV)metrics,including those in the cardiac amyloidosis subgroup(n=31).AI-CS-CINE enabled faster,easier imaging in patients with claustrophobia,dyspnea,arrhythmias,or restlessness.Motion-artifacted C-CINE images were reliably interpreted from AI-CS-CINE.CONCLUSION AI-CS-CINE accelerated CMR image acquisition and reconstruction,preserved anatomical detail,and diminished impact of patient-related motion.Quantitative AI-CS-CINE metrics agreed closely with C-CINE in cardio-oncology patients,including the cardiac amyloidosis cohort,as well as healthy volunteers regardless of left and right ventricular size and function.AI-CS-CINE significantly enhanced CMR workflow,particularly in challenging cases.The strong analytical concordance underscores reliability and robustness of AI-CS-CINE as a valuable tool. 展开更多
关键词 Cardiac magnetic resonance CINE imaging Artificial intelligence compressed sensing Imaging workflow Acquisition time Cardiac function Cardio-oncology Image quality Challenging patients
暂未订购
Comparison of MRI Under-Sampling Techniques for Compressed Sensing with Translation Invariant Wavelets Using FastTestCS: A Flexible Simulation Tool
5
作者 Christopher Baker 《Journal of Signal and Information Processing》 2016年第4期252-271,共20页
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ... A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research. 展开更多
关键词 compressed sensing Translation Invariant Wavelet Simulation Software Total Variation l1 Minimization
在线阅读 下载PDF
Compressed sensing estimation of sparse underwater acoustic channels with a large time delay spread 被引量:4
6
作者 伍飞云 周跃海 +1 位作者 童峰 方世良 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期271-277,共7页
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s... The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm. 展开更多
关键词 norm constraint sparse underwater acousticchannel compressed sensing
在线阅读 下载PDF
基于Compressed Sensing框架的图像多描述编码方法 被引量:21
7
作者 刘丹华 石光明 +2 位作者 周佳社 高大化 吴家骥 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第4期298-302,共5页
基于新兴的压缩感知(Compressed Sensing,CS)理论,提出了一种抗丢包能力强且结构简单易实现的多描述编码方法.首先对变换后的图像进行交织抽取分块,再对各子块进行随机观测、量化、打包形成多个描述子码流.解码端根据接收码流情况通过... 基于新兴的压缩感知(Compressed Sensing,CS)理论,提出了一种抗丢包能力强且结构简单易实现的多描述编码方法.首先对变换后的图像进行交织抽取分块,再对各子块进行随机观测、量化、打包形成多个描述子码流.解码端根据接收码流情况通过求解优化问题重建原图像.由于随机观测过程简单易实现,故该方法可以以较低的计算复杂度构造出较多的描述子.实验结果表明,在同样的丢包率下,本文方法的重构质量(PSNR)明显优于SPIHT多描述编码方法,且计算复杂度较低. 展开更多
关键词 多描述编码 压缩感知 随机观测 优化问题
在线阅读 下载PDF
Investigation of prior image constrained compressed sensing-based spectral X-ray CT image reconstruction
8
作者 周正东 余子丽 +1 位作者 张雯雯 管绍林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期420-425,共6页
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres... To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively. 展开更多
关键词 spectral X-ray CT prior image compressed sensing optimization algorithm image reconstruction
在线阅读 下载PDF
Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain 被引量:3
9
作者 TIAN He DONG Chunzhu +1 位作者 YIN Hongcheng YUAN Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期56-67,共12页
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used... In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability. 展开更多
关键词 three-dimensional(3D)imaging synthetic aperture radar(SAR) sparse flight INTERFEROMETRY compressed sensing(cs)
在线阅读 下载PDF
Novel imaging methods of stepped frequency radar based on compressed sensing 被引量:4
10
作者 Jihong Liu Shaokun Xu Xunzhang Gao Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期47-56,共10页
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle... The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless. 展开更多
关键词 radar imaging compressed sensing cs stepped frequency random sampling.
在线阅读 下载PDF
Algorithm for reconstructing compressed sensing color imaging using the quaternion total variation
11
作者 廖帆 严路 +2 位作者 伍家松 韩旭 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期51-54,共4页
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil... A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts. 展开更多
关键词 total variation compressed sensing quatemion sparse reconstruction color image restoration
在线阅读 下载PDF
Root imaging from ground penetrating radar data by CPSO-OMP compressed sensing 被引量:4
12
作者 Chao Li Yaowen Su +1 位作者 Yizhuo Zhang Huimin Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期155-162,共8页
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor... As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction. 展开更多
关键词 Chaotic particle swarm Compression sensing Ground penetrating radar Orthogonal matching pursuit (OMP) Root imaging
在线阅读 下载PDF
AN ADAPTIVE MEASUREMENT SCHEME BASED ON COMPRESSED SENSING FOR WIDEBAND SPECTRUM DETECTION IN COGNITIVE WSN 被引量:1
13
作者 Xu Xiaorong Zhang Jianwu +1 位作者 Huang Aiping Jiang Bin 《Journal of Electronics(China)》 2012年第6期585-592,共8页
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa... An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing. 展开更多
关键词 Cognitive Wireless Sensor Network (C-WSN) compressed sensing (cs) Adaptive Measurement Scheme (AMS) Wideband spectrum detection Restricted Isometry Property (RIP) Orthogonal Matching Pursuit (OMP)
在线阅读 下载PDF
COMPRESSED SPEECH SIGNAL SENSING BASED ON THE STRUCTURED BLOCK SPARSITY WITH PARTIAL KNOWLEDGE OF SUPPORT 被引量:1
14
作者 JiYunyun YangZhen XuQian 《Journal of Electronics(China)》 2012年第1期62-71,共10页
Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discusse... Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults. 展开更多
关键词 compressed sensing (cs) Speech signals sensing matrix Block sparsity
在线阅读 下载PDF
Low sidelobe robust imaging in random frequency-hopping wideband radar based on compressed sensing 被引量:7
15
作者 刘振 魏玺章 黎湘 《Journal of Central South University》 SCIE EI CAS 2013年第3期702-714,共13页
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress... High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB. 展开更多
关键词 random frequency-hopping radar high resolution range profile sidelobe suppression motion compensation compressed sensing
在线阅读 下载PDF
Sensing Matrix Optimization for Multi-Target Localization Using Compressed Sensing in Wireless Sensor Network 被引量:4
16
作者 Xinhua Jiang Ning Li +2 位作者 Yan Guo Jie Liu Cong Wang 《China Communications》 SCIE CSCD 2022年第3期230-244,共15页
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p... In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods. 展开更多
关键词 compressed sensing hybrid metaheuristic K-means clustering multi-target localization t%-averaged mutual coherence sensing matrix optimization
在线阅读 下载PDF
NOVEL METHOD OF MOVING TARGET DETECTION FOR DUAL-CHANNEL WAS RADAR BASED ON COMPRESSED SENSING 被引量:1
17
作者 Sun Xiaoyu Qi Xiangyang 《Journal of Electronics(China)》 2014年第2期115-120,共6页
We propose a ground moving target detection method for dual-channel Wide Area Surveillance(WAS) radar based on Compressed Sensing(CS).Firstly,the method of moving target detection of the WAS radar is studied.In order ... We propose a ground moving target detection method for dual-channel Wide Area Surveillance(WAS) radar based on Compressed Sensing(CS).Firstly,the method of moving target detection of the WAS radar is studied.In order to reduce the sample data quantity of the radar,the echo data is randomly sampled in the azimuth direction,then,the matched filter is used to perform the range direction focus.We can use the compressive sensing theory to recover the signal in the Doppler domain.At last,the phase difference between the two channels is compensated to suppress the clutter.The result of the simulated data verifies the effectiveness of the proposed method. 展开更多
关键词 Wide-Area Surveillance(WAS) compressed sensing(cs) Moving target detection
在线阅读 下载PDF
Compressed sensing based channel estimation for fast fading OFDM systems 被引量:2
18
作者 Xiaoping Zhou Yong Fang Min Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期550-556,共7页
A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequ... A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency. 展开更多
关键词 compressed sensing sparse channel channel estimation fast fading.
在线阅读 下载PDF
Deformation and failure characteristics of sandstone under uniaxial compression using distributed fiber optic strain sensing 被引量:6
19
作者 Lingfan Zhang Duoxing Yang +1 位作者 Zhonghui Chen Aichun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期1046-1055,共10页
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf... This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression. 展开更多
关键词 Distributed fiber optic strain sensing (DFOSS) Uniaxial compression Strain localization
在线阅读 下载PDF
Wavelet Transform-Based Distributed Compressed Sensing in Wireless Sensor Networks 被引量:4
20
作者 Hu Haifeng Yang Zhen Bao Jianmin 《China Communications》 SCIE CSCD 2012年第2期1-12,共12页
Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distr... Wireless Sensor Networks(WSN) are mainly characterized by a potentially large number of distributed sensor nodes which collectively transmit information about sensed events to the sink.In this paper,we present a Distributed Wavelet Basis Generation(DWBG) algorithm performing at the sink to obtain the distributed wavelet basis in WSN.And on this basis,a Wavelet Transform-based Distributed Compressed Sensing(WTDCS) algorithm is proposed to compress and reconstruct the sensed data with spatial correlation.Finally,we make a detailed analysis of relationship between reconstruction performance and WTDCS algorithm parameters such as the compression ratio,the channel Signal-to-Noise Ratio(SNR),the observation noise power and the correlation decay parameter by simulation.The simulation results show that WTDCS can achieve high performance in terms of energy and reconstruction accuracy,as compared to the conventional distributed wavelet transform algorithm. 展开更多
关键词 WSN distributed compressed sensing distributed wavelet transform
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部