State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.
State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The la...State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The laboratory was reconstructed based on former State Key Laboratory of Baiyun Obo Rare Earth Resources Researches and Comprehensive Utilization.展开更多
Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for ge...Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for geothermal resources during the construction and operation phases of the railway,thereby furnishing robust support and valuable reference for the holistic utilization of geothermal resources along the railway corridor.Design/methodology/approach–Through an in-depth analysis of the extant utilization of geothermal resources in China,it is discerned that the current utilization modalities are relatively rudimentary,bereft of rational planning and characterized by a low utilization rate.Concurrently,by integrating the practical requisites of railway construction and operation and conducting theoretical dissections,a comprehensive utilization plan for the construction and operation periods of railway is proffered.Findings–In light of the railway’s construction and operation characteristics,geothermal utilization models are categorized.During construction,comprehensive modalities include tunnel illumination power generation,construction area heating,tunnel antifreeze using shallow geothermal energy,tunnel pavement antifreeze and construction concrete maintenance.During operation,they comprise operation tunnel antifreeze,railway roadbed antifreeze,railway switch snow melting and deicing,geothermal power station establishment and railway hot spring health tourism planning.Originality/value–According to the characteristics and actual needs of railway construction and operation,it is of great significance to rationally utilize geothermal resources to promote the construction and operation of green railways.展开更多
The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanis...The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.展开更多
In order to further promote the chestnut industrial chain,a large number of chestnut byproducts(chestnut leaves,chestnut shells,chestnut flowers,etc.)are produced every year.These chestnut byproducts will be comprehen...In order to further promote the chestnut industrial chain,a large number of chestnut byproducts(chestnut leaves,chestnut shells,chestnut flowers,etc.)are produced every year.These chestnut byproducts will be comprehensively developed and utilized in different degrees,such as in-depth research and development in the fields of animal husbandry,agriculture,and cosmetics,so as to achieve the effects of accelerating the high-quality development of chestnut industry,realizing the green cycle of resources,reducing waste and promoting the development of rural industries.展开更多
Coal-based soild wastes(CBSWs)are industrial byproducts that can be harmful to the environment.The exploitation and utilization of CBsWs offer societal advantages such as resource conservation,pollution reduction,and ...Coal-based soild wastes(CBSWs)are industrial byproducts that can be harmful to the environment.The exploitation and utilization of CBsWs offer societal advantages such as resource conservation,pollution reduction,and cost-effective production.However,environmentally sustainable management remains a worldwide challenge due to the substantial production volume and limited disposal capacity of CBSWs.The physicochemical properties and utilization of CBSWs are summarized,including fly ash,coal gangue and coal gasification slag.It also presents the current global applications status of CBSWs resources and examines market supply and demand.Subsequently,the paper provides an overview of studies on ways to utilise CBSWs,highlighting the primary avenues of CBSWs resource utilization which are mainly from the fields of chemical materials,metallurgy and agriculture.Furthermore,a comparative evaluation of the various methods for CBSWs resource recovery is conducted,outlining their respective advantages and disadvantages.The future development of CBSWs recycling processes is also discussed.The review concludes that while there is a growing need for attention in CBSWs recycling,its utilization will involve a combination of both large-scale treatment and refinement processes.The paper aims to offer references and insights for the effective utilization and environmental protection of CBSWs.Future direction will focus on the collaborative utilization of CBSWs,emphasizing on the combination of large-scale and high-value utilization.In addition,there is a need to establish a comprehensive database based on on-site production practices,explore on-site solutions to reduce transportation costs,and improve physicochemical properties during the production process.展开更多
The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control...The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control strategies,ensuring fault protection is paramount for the secure and steady operation of the traction power supply system(TPSS)integrated with RBEUS.This paper introduces an innovative protection scheme tailored to diverse RBEUS application scenarios.Firstly,fault categories are streamlined into three levels:system,equipment,and warning.Subsequently,a novel multi-port active power differential protection method,aligned with RBEUS operational principles,is crafted to serve as a comprehensive and sensitive main protection.Building upon this foundation,a hierarchical protection structure for RBEUS is established,addressing the intricacies and variations in fault types while boosting anti-disturbance capabilities under faulty conditions.Embracing the principle of railway-oriented safety,a collaborative RBEUS-TPSS protection scheme is put forth.Finally,through simulated scenarios encompassing various fault conditions,the proposed scheme’s feasibility and effectiveness are convincingly validated.展开更多
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off...Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.展开更多
China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization w...China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization way, this pa- per summarized the research progresses in tea waste as a raw material for ex- tracting active ingredients and preparing absorbent, activated carbon, bio-organic fer- tilizer, animal feed and nutrients for edible fungi cultivation. In addition, the develop- ment trend of comprehensive utilization of tea waste was prospected. It is found that the comprehensive utilization of tea waste using a variety of techniques can im- prove the utilization efficiency of tea waste and reduce production costs. Finally, a simple and practical comprehensive utilization program was proposed to provide a reference for practical application.展开更多
A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products w...A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products were studied by powder wettability analysis, X-ray diffraction(XRD), scanning electron microscopy(SEM) and mineral liberation analyzer(MLA). It was found that the primary lead species was laurionite and most of the particles were overwrapped with KCl. Wetting grinding was shown to accelerate the dispersion of sintering dust and transform the KCl overlay to a leachate with 20.78 g/L of K+. A lead and silver concentrate consisting of 40.82% of Pb and 0.96 kg/t of Ag was achieved, while an iron concentrate with 60.89% of Fe was gained as tailings among sulfidization flotation. The recoveries of Pb, Ag and Fe were 89.57%, 87.85% and 88.58%, respectively. The results indicate that this method is a feasible and promising process for the comprehensive utilization of sintering dust.展开更多
Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship b...Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.展开更多
The recycling of spent lithium-ion batteries(LIBs)has aroused considerable interest among the general public,industry professionals,and academic researchers,driven by its environmental,resource recovery,and economic b...The recycling of spent lithium-ion batteries(LIBs)has aroused considerable interest among the general public,industry professionals,and academic researchers,driven by its environmental,resource recovery,and economic benefits,particularly for those used in new energy vehicles.However,recycling spent automotive LIBs for industrial production remains challenging due to technical feasibility,recycling efficiency,economic viability,and environmental sustainability.This review aims to systematically analyze the status of spent automotive LIBs recycling,and provide an overall review of the full-chain recycling processes for technical evaluation and selection.Firstly,it carefully describes the pre-treatment process,which includes discharging,disassembly,inspection,crushing,pyrolysis,and sieving of LIBs.Subsequently,it examines the principal technologies in extracting valuable metals,including pyro-metallurgy,hydro-metallurgy,microbial metallurgy,mechanical chemistry,and electrochemical deposition.A comprehensive analysis of the operation,mechanism,efficiency,and economics is provided,helping readers understand the technical advantages,disadvantages,and applicable scenarios of each process.Furthermore,it also considers novel environmentally-friendly processes,such as direct regeneration and direct synthesis,and analyzes their potential and limitations in the resource recycling field.Finally,differentiated comprehensive recycling strategies are proposed for typical spent automotive LIBs,aiming at providing effective guidance and recommendations for industrial investors and practitioners,and promoting sustainable development of the comprehensive recycling industry.展开更多
With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-leng...With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-lenge,prompting innovation in food processing technologies.This review introduces first the common nutritional challenges in the processing of staple food crops,followed by the comprehensive examination of research aiming to enhance the nutritional quality of staple food crop-based foods through innovative processing technologies,including microwave(MW),pulsed electric field(PEF),ultrasound,modern fer-mentation technology,and enzyme technology.Additionally,soybean processing is used as an example to underscore the importance of integrating innovative processing technologies for optimizing nutrient utilization in staple food crops.Although these innovative processing technologies have demonstrated a significant potential to improve nutrient utilization efficiency and enhance the overall nutritional pro-file of staple food crop-based food products,their current limitations must be acknowledged and addressed in future research.Fortunately,advancements in science and technology will facilitate pro-gress in food processing,enabling both the improvement of existing techniques as well as the develop-ment of entirely novel methodologies.This work aims to enhance the understanding of food practitioners on the way processing technologies may optimize nutrient utilization,thereby fostering innovation in food processing research and synergistic multi-technological strategies,ultimately providing valuable references to address global food security challenges.展开更多
The comprehensive treatment of river courses and their landscape environments have attracted more and more attention of the society.However,due to its wide coverage,technical difficulties and long restoration period,d...The comprehensive treatment of river courses and their landscape environments have attracted more and more attention of the society.However,due to its wide coverage,technical difficulties and long restoration period,designers need to explore,research and design with a more comprehensive and longer-term planning perspective,and a more comprehensive professional strength.Taking the comprehensive regulation and landscape design of Mayuanxi River in Chongqing as an example,this paper integrated the regulation,ecological restoration,landscape construction,project planning and cultural display of the river,and systematically put forward ideas and strategies for the comprehensive regulation and landscape design of the river,with a view to making a beneficial exploration for the research in this field.Notably,the paper highlighted innovative techniques such as vegetation concrete for revetment and rainwater gardens for ecological rainwater management.展开更多
Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digit...Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.展开更多
Objective:To explore the effect of comprehensive nursing on relieving psychological pressure in patients with pulmonary micro-nodules.Methods:One hundred and twenty patients with pulmonary micro-nodules who received d...Objective:To explore the effect of comprehensive nursing on relieving psychological pressure in patients with pulmonary micro-nodules.Methods:One hundred and twenty patients with pulmonary micro-nodules who received diagnosis and treatment in our hospital from January 2024 to December 2024 were randomly divided into control and observation groups.The control group received routine nursing,while the observation group received comprehensive nursing.The Self-Rating Anxiety Scale(SAS)and Self-rating Depression Scale(SDS)were used to evaluate the patients’psychological states before and after nursing.Patient satisfaction with nursing was analyzed using a nursing satisfaction survey scale.Results:After nursing,the SAS and SDS scores of the observation group were significantly lower than those of the control group(P<0.05).The nursing satisfaction rates of the observation and control groups were 98.33%and 83.33%,respectively,with statistically significant differences(P<0.05).Conclusion:Comprehensive nursing intervention for patients with pulmonary micro-nodules can effectively relieve their psychological pressure and improve nursing satisfaction,demonstrating clinical value.展开更多
Focusing on comprehensive land consolidation in mountainous areas, this paper explores the connotation of comprehensive land consolidation and its internal logic for promoting rural revitalization. Furthermore, it elu...Focusing on comprehensive land consolidation in mountainous areas, this paper explores the connotation of comprehensive land consolidation and its internal logic for promoting rural revitalization. Furthermore, it elucidates the effectiveness and experience of mountainous area comprehensive land consolidation in the rural revitalization process by using practical cases. The aim is to provide theoretical reference and practical guidance for leveraging the role of comprehensive land consolidation in mountainous areas for rural revitalization, thereby promoting the sustainable utilization of land resources and the coordinated development of the economy and society in mountainous regions.展开更多
The aim of this study is to develop an understanding on the contributing influences that occur among qualities of public space,public space aesthetics,the comfort derived in public space and public space accessibility...The aim of this study is to develop an understanding on the contributing influences that occur among qualities of public space,public space aesthetics,the comfort derived in public space and public space accessibility in science cities.This study seeks to investigate the extent at which public space attributes impact on one another.The emphasis accruing to open greenery including public spaces in the physical development of science cities necessitates the selection of Cyberjaya Malaysia as the study area.Survey questionnaires were used to investigate potential respondent’s perceptions on public space utilization and the feedback was validated with SEM(structural equation modelling).The findings indicated that the accessibility attributes significantly influenced other public space utilization attributes while good quality of public space influenced the comfort derived from it.Attractiveness of public space was found not capable to predict the comfort and good quality of public space.展开更多
The widespread adoption of the internet has provided new platforms and possibilities for Chinese language instruction.Students can utilize online resources or mobile devices for learning outside the classroom,while te...The widespread adoption of the internet has provided new platforms and possibilities for Chinese language instruction.Students can utilize online resources or mobile devices for learning outside the classroom,while teachers can shift the“intensive instruction”component of comprehensive Chinese courses to extracurricular settings.This approach enables increased practice time during class sessions,truly placing the learner at the center of the educational process.The flipped classroom model aligns with this philosophy and complements the disciplinary characteristics of comprehensive Chinese courses.In practice,implementing the O-PIRTAS universal flipped classroom model revealed its effectiveness in enhancing oral proficiency and overall competency.However,it is essential to concurrently address students’writing skills and cultivate their awareness of the flipped classroom approach.展开更多
Background:Patients with cancer are confronted not only with physical changes and pain but also with significant psychological challenges,including distress,anxiety,and depression,as a consequence of their diagnosis a...Background:Patients with cancer are confronted not only with physical changes and pain but also with significant psychological challenges,including distress,anxiety,and depression,as a consequence of their diagnosis and treatment.This study aimed to identify the factors influencing anxiety or depression in patientswith cancer,examine the relationship between the duration since cancer diagnosis and psychological state,and explore the association between these factors and the use of Korean medicine(KM).Methods:This study utilized data from the 2018 Korea Health Panel spanning 2008 to 2018.The analysis focused on adult participants(aged 19 and above)diagnosed with cancer who responded to their psychological state(i.e.,anxiety or depression)and the duration since their cancer diagnosis.The dependent variables were the presence of anxiety or depression and the utilization of KM.Descriptive statistics and multiple logistic regression analysis were used to investigate factors influencing these variables.Results:A total of 773 participants were included in the final analysis,of whom 214 reported prior KM experience.Multiple logistic regression analysis indicated that the likelihood of experiencing anxiety or depression decreased as the duration since cancer diagnosis increased.Factors associated with anxiety or depression in patients with cancer included sex(odds ratio[OR]=2.06),number of chronic diseases(OR=1.17),Charlson Comorbidity Index score(CCI score of 2:OR=1.60),and EQ-5D(EuroQol Five Dimensions Questionnaire)index(OR<0.001).Cancer patients without anxiety or depression were more likely to use KM if they had been diagnosed within three years,were female(OR=2.11),and had a higher number of chronic conditions(OR=1.20).In contrast,patients with anxiety or depression were more likely to utilizeKMif theyhadbeendiagnosed formore thanfive years(OR=6.30)and resided in urban areas.Conclusions:The results suggest that patterns of KM utilization among patients with cancer are associated with their psychological state.Future research should focus on identifying direct correlations between psychological factors and KM use in patients with cancer.展开更多
文摘State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.
文摘State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The laboratory was reconstructed based on former State Key Laboratory of Baiyun Obo Rare Earth Resources Researches and Comprehensive Utilization.
文摘Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for geothermal resources during the construction and operation phases of the railway,thereby furnishing robust support and valuable reference for the holistic utilization of geothermal resources along the railway corridor.Design/methodology/approach–Through an in-depth analysis of the extant utilization of geothermal resources in China,it is discerned that the current utilization modalities are relatively rudimentary,bereft of rational planning and characterized by a low utilization rate.Concurrently,by integrating the practical requisites of railway construction and operation and conducting theoretical dissections,a comprehensive utilization plan for the construction and operation periods of railway is proffered.Findings–In light of the railway’s construction and operation characteristics,geothermal utilization models are categorized.During construction,comprehensive modalities include tunnel illumination power generation,construction area heating,tunnel antifreeze using shallow geothermal energy,tunnel pavement antifreeze and construction concrete maintenance.During operation,they comprise operation tunnel antifreeze,railway roadbed antifreeze,railway switch snow melting and deicing,geothermal power station establishment and railway hot spring health tourism planning.Originality/value–According to the characteristics and actual needs of railway construction and operation,it is of great significance to rationally utilize geothermal resources to promote the construction and operation of green railways.
基金funded by State Grid Beijing Electric Power Company Technology Project,grant number 520210230004.
文摘The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceAgricultural Science and Technology Achievement Promotion Project in Hebei Province(JNK 24083).
文摘In order to further promote the chestnut industrial chain,a large number of chestnut byproducts(chestnut leaves,chestnut shells,chestnut flowers,etc.)are produced every year.These chestnut byproducts will be comprehensively developed and utilized in different degrees,such as in-depth research and development in the fields of animal husbandry,agriculture,and cosmetics,so as to achieve the effects of accelerating the high-quality development of chestnut industry,realizing the green cycle of resources,reducing waste and promoting the development of rural industries.
基金supported by the following:“National Natural Science Foundation of China”(22478231)“Natural Science Foundation of Henan”(242300421449)“Fundamental Research Program of Shanxi Province”(202403021221011).
文摘Coal-based soild wastes(CBSWs)are industrial byproducts that can be harmful to the environment.The exploitation and utilization of CBsWs offer societal advantages such as resource conservation,pollution reduction,and cost-effective production.However,environmentally sustainable management remains a worldwide challenge due to the substantial production volume and limited disposal capacity of CBSWs.The physicochemical properties and utilization of CBSWs are summarized,including fly ash,coal gangue and coal gasification slag.It also presents the current global applications status of CBSWs resources and examines market supply and demand.Subsequently,the paper provides an overview of studies on ways to utilise CBSWs,highlighting the primary avenues of CBSWs resource utilization which are mainly from the fields of chemical materials,metallurgy and agriculture.Furthermore,a comparative evaluation of the various methods for CBSWs resource recovery is conducted,outlining their respective advantages and disadvantages.The future development of CBSWs recycling processes is also discussed.The review concludes that while there is a growing need for attention in CBSWs recycling,its utilization will involve a combination of both large-scale treatment and refinement processes.The paper aims to offer references and insights for the effective utilization and environmental protection of CBSWs.Future direction will focus on the collaborative utilization of CBSWs,emphasizing on the combination of large-scale and high-value utilization.In addition,there is a need to establish a comprehensive database based on on-site production practices,explore on-site solutions to reduce transportation costs,and improve physicochemical properties during the production process.
基金supported by the National Natural Science Foundation of China(Nos.52107126 and52077179)the Key Regional Innovation and Development Joint Fund Project(No.2023YFB2303901)the funding of Chengdu Guojia Electrical Engineering Co.,Ltd.(No.NEEC-2022-B11).
文摘The regenerative braking energy utilization system(RBEUS)stands as a promising technique for improving the efficiency and power quality of electrified railways.Beyond the vital aspects of energy management and control strategies,ensuring fault protection is paramount for the secure and steady operation of the traction power supply system(TPSS)integrated with RBEUS.This paper introduces an innovative protection scheme tailored to diverse RBEUS application scenarios.Firstly,fault categories are streamlined into three levels:system,equipment,and warning.Subsequently,a novel multi-port active power differential protection method,aligned with RBEUS operational principles,is crafted to serve as a comprehensive and sensitive main protection.Building upon this foundation,a hierarchical protection structure for RBEUS is established,addressing the intricacies and variations in fault types while boosting anti-disturbance capabilities under faulty conditions.Embracing the principle of railway-oriented safety,a collaborative RBEUS-TPSS protection scheme is put forth.Finally,through simulated scenarios encompassing various fault conditions,the proposed scheme’s feasibility and effectiveness are convincingly validated.
基金supported by the National Key Research and Development Project(2019YFC1906601)China the Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences(C12021A04111)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ-040).
文摘Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.
基金Supported by Innovation Funds of Jiangxi Academy of Agricultural Sciences(20141CBS003)Jiangxi Provincial Earmarked Fund for Agriculture Research System(JXARS-02)~~
文摘China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization way, this pa- per summarized the research progresses in tea waste as a raw material for ex- tracting active ingredients and preparing absorbent, activated carbon, bio-organic fer- tilizer, animal feed and nutrients for edible fungi cultivation. In addition, the develop- ment trend of comprehensive utilization of tea waste was prospected. It is found that the comprehensive utilization of tea waste using a variety of techniques can im- prove the utilization efficiency of tea waste and reduce production costs. Finally, a simple and practical comprehensive utilization program was proposed to provide a reference for practical application.
基金Project(CX2015B053)supported by the Hunan Provincial Innovation Foundation for PostgraduateChinaProject(B14034)supported by National 111 Project of China
文摘A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products were studied by powder wettability analysis, X-ray diffraction(XRD), scanning electron microscopy(SEM) and mineral liberation analyzer(MLA). It was found that the primary lead species was laurionite and most of the particles were overwrapped with KCl. Wetting grinding was shown to accelerate the dispersion of sintering dust and transform the KCl overlay to a leachate with 20.78 g/L of K+. A lead and silver concentrate consisting of 40.82% of Pb and 0.96 kg/t of Ag was achieved, while an iron concentrate with 60.89% of Fe was gained as tailings among sulfidization flotation. The recoveries of Pb, Ag and Fe were 89.57%, 87.85% and 88.58%, respectively. The results indicate that this method is a feasible and promising process for the comprehensive utilization of sintering dust.
基金supported by the National Key Research and Development Program(No.2021YFD1300201)Jilin Provincial Department of Science and Technology Innovation Platform and Talent Special Project(No.20230508090RC).
文摘Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.
基金financially supported by the Special Project of Tiandi Technology Co.,Ltd.(Project No.2023-TD-MS007)CUCDE Environmental Technology Co.,Ltd.(Project No.ZCHJ2024001)。
文摘The recycling of spent lithium-ion batteries(LIBs)has aroused considerable interest among the general public,industry professionals,and academic researchers,driven by its environmental,resource recovery,and economic benefits,particularly for those used in new energy vehicles.However,recycling spent automotive LIBs for industrial production remains challenging due to technical feasibility,recycling efficiency,economic viability,and environmental sustainability.This review aims to systematically analyze the status of spent automotive LIBs recycling,and provide an overall review of the full-chain recycling processes for technical evaluation and selection.Firstly,it carefully describes the pre-treatment process,which includes discharging,disassembly,inspection,crushing,pyrolysis,and sieving of LIBs.Subsequently,it examines the principal technologies in extracting valuable metals,including pyro-metallurgy,hydro-metallurgy,microbial metallurgy,mechanical chemistry,and electrochemical deposition.A comprehensive analysis of the operation,mechanism,efficiency,and economics is provided,helping readers understand the technical advantages,disadvantages,and applicable scenarios of each process.Furthermore,it also considers novel environmentally-friendly processes,such as direct regeneration and direct synthesis,and analyzes their potential and limitations in the resource recycling field.Finally,differentiated comprehensive recycling strategies are proposed for typical spent automotive LIBs,aiming at providing effective guidance and recommendations for industrial investors and practitioners,and promoting sustainable development of the comprehensive recycling industry.
基金supported by the National Key Research and Development Program of China(2023YFD2100205)the Fujian Province Science and Technology Plan Project,China(2023N3008).
文摘With the rapid growth of the global population and the increasing demand for healthier diets,improving the nutrient utilization efficiency of staple food crops has become a critical scientific and industrial chal-lenge,prompting innovation in food processing technologies.This review introduces first the common nutritional challenges in the processing of staple food crops,followed by the comprehensive examination of research aiming to enhance the nutritional quality of staple food crop-based foods through innovative processing technologies,including microwave(MW),pulsed electric field(PEF),ultrasound,modern fer-mentation technology,and enzyme technology.Additionally,soybean processing is used as an example to underscore the importance of integrating innovative processing technologies for optimizing nutrient utilization in staple food crops.Although these innovative processing technologies have demonstrated a significant potential to improve nutrient utilization efficiency and enhance the overall nutritional pro-file of staple food crop-based food products,their current limitations must be acknowledged and addressed in future research.Fortunately,advancements in science and technology will facilitate pro-gress in food processing,enabling both the improvement of existing techniques as well as the develop-ment of entirely novel methodologies.This work aims to enhance the understanding of food practitioners on the way processing technologies may optimize nutrient utilization,thereby fostering innovation in food processing research and synergistic multi-technological strategies,ultimately providing valuable references to address global food security challenges.
基金Supported by General Project of Chongqing Natural Science Foundation(CSTB2024NSCQ-MSX1067)Key Project of Humanities and Social Sciences of Chongqing Municipal Education Commission(24SKGH346)Natural Science Project of Chongqing College of Humanities,Science and Technology(CRKZK2023010).
文摘The comprehensive treatment of river courses and their landscape environments have attracted more and more attention of the society.However,due to its wide coverage,technical difficulties and long restoration period,designers need to explore,research and design with a more comprehensive and longer-term planning perspective,and a more comprehensive professional strength.Taking the comprehensive regulation and landscape design of Mayuanxi River in Chongqing as an example,this paper integrated the regulation,ecological restoration,landscape construction,project planning and cultural display of the river,and systematically put forward ideas and strategies for the comprehensive regulation and landscape design of the river,with a view to making a beneficial exploration for the research in this field.Notably,the paper highlighted innovative techniques such as vegetation concrete for revetment and rainwater gardens for ecological rainwater management.
基金supported by the National Natural Science Foundation of China(72231008,72171193,and 72071153)the Science and Technology Innovation Group Program of Shaanxi Province(2024RS-CXTD-28)the Open Fund of Intelligent Control Laboratory(ICL-2023-0304).
文摘Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.
基金Science and Technology Support Program of Baoding City,Hebei Province(Project No.:2241ZF326)。
文摘Objective:To explore the effect of comprehensive nursing on relieving psychological pressure in patients with pulmonary micro-nodules.Methods:One hundred and twenty patients with pulmonary micro-nodules who received diagnosis and treatment in our hospital from January 2024 to December 2024 were randomly divided into control and observation groups.The control group received routine nursing,while the observation group received comprehensive nursing.The Self-Rating Anxiety Scale(SAS)and Self-rating Depression Scale(SDS)were used to evaluate the patients’psychological states before and after nursing.Patient satisfaction with nursing was analyzed using a nursing satisfaction survey scale.Results:After nursing,the SAS and SDS scores of the observation group were significantly lower than those of the control group(P<0.05).The nursing satisfaction rates of the observation and control groups were 98.33%and 83.33%,respectively,with statistically significant differences(P<0.05).Conclusion:Comprehensive nursing intervention for patients with pulmonary micro-nodules can effectively relieve their psychological pressure and improve nursing satisfaction,demonstrating clinical value.
文摘Focusing on comprehensive land consolidation in mountainous areas, this paper explores the connotation of comprehensive land consolidation and its internal logic for promoting rural revitalization. Furthermore, it elucidates the effectiveness and experience of mountainous area comprehensive land consolidation in the rural revitalization process by using practical cases. The aim is to provide theoretical reference and practical guidance for leveraging the role of comprehensive land consolidation in mountainous areas for rural revitalization, thereby promoting the sustainable utilization of land resources and the coordinated development of the economy and society in mountainous regions.
文摘The aim of this study is to develop an understanding on the contributing influences that occur among qualities of public space,public space aesthetics,the comfort derived in public space and public space accessibility in science cities.This study seeks to investigate the extent at which public space attributes impact on one another.The emphasis accruing to open greenery including public spaces in the physical development of science cities necessitates the selection of Cyberjaya Malaysia as the study area.Survey questionnaires were used to investigate potential respondent’s perceptions on public space utilization and the feedback was validated with SEM(structural equation modelling).The findings indicated that the accessibility attributes significantly influenced other public space utilization attributes while good quality of public space influenced the comfort derived from it.Attractiveness of public space was found not capable to predict the comfort and good quality of public space.
文摘The widespread adoption of the internet has provided new platforms and possibilities for Chinese language instruction.Students can utilize online resources or mobile devices for learning outside the classroom,while teachers can shift the“intensive instruction”component of comprehensive Chinese courses to extracurricular settings.This approach enables increased practice time during class sessions,truly placing the learner at the center of the educational process.The flipped classroom model aligns with this philosophy and complements the disciplinary characteristics of comprehensive Chinese courses.In practice,implementing the O-PIRTAS universal flipped classroom model revealed its effectiveness in enhancing oral proficiency and overall competency.However,it is essential to concurrently address students’writing skills and cultivate their awareness of the flipped classroom approach.
基金supported by a grant of the R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(grant number:RS-2023-KH139376).
文摘Background:Patients with cancer are confronted not only with physical changes and pain but also with significant psychological challenges,including distress,anxiety,and depression,as a consequence of their diagnosis and treatment.This study aimed to identify the factors influencing anxiety or depression in patientswith cancer,examine the relationship between the duration since cancer diagnosis and psychological state,and explore the association between these factors and the use of Korean medicine(KM).Methods:This study utilized data from the 2018 Korea Health Panel spanning 2008 to 2018.The analysis focused on adult participants(aged 19 and above)diagnosed with cancer who responded to their psychological state(i.e.,anxiety or depression)and the duration since their cancer diagnosis.The dependent variables were the presence of anxiety or depression and the utilization of KM.Descriptive statistics and multiple logistic regression analysis were used to investigate factors influencing these variables.Results:A total of 773 participants were included in the final analysis,of whom 214 reported prior KM experience.Multiple logistic regression analysis indicated that the likelihood of experiencing anxiety or depression decreased as the duration since cancer diagnosis increased.Factors associated with anxiety or depression in patients with cancer included sex(odds ratio[OR]=2.06),number of chronic diseases(OR=1.17),Charlson Comorbidity Index score(CCI score of 2:OR=1.60),and EQ-5D(EuroQol Five Dimensions Questionnaire)index(OR<0.001).Cancer patients without anxiety or depression were more likely to use KM if they had been diagnosed within three years,were female(OR=2.11),and had a higher number of chronic conditions(OR=1.20).In contrast,patients with anxiety or depression were more likely to utilizeKMif theyhadbeendiagnosed formore thanfive years(OR=6.30)and resided in urban areas.Conclusions:The results suggest that patterns of KM utilization among patients with cancer are associated with their psychological state.Future research should focus on identifying direct correlations between psychological factors and KM use in patients with cancer.