At present,shale gas exploration and development in China is faced with some problems,such as the imperfect evaluation system of reservoir effectiveness and the limitations of reservoir evaluation system on efficient d...At present,shale gas exploration and development in China is faced with some problems,such as the imperfect evaluation system of reservoir effectiveness and the limitations of reservoir evaluation system on efficient development of shale gas.In order to improve the content and the standard of reservoir evaluation,this paper analyzed the shortcomings and challenges in the static evaluation of shale gas reservoirs on the basis of existing reservoir evaluation,and established a method for evaluating shale gas reservoir effectiveness and a scheme for classifying pore systems.Then,the dynamic evaluation parameters after shale fracturing and their effects on drainage and production measures were discussed.In addition,the potential evaluation parameters of“automatic mitigating water blocking”were studied,and a comprehensive reservoir evaluation system of“staticedynamic”combination was established.And the following research results were obtained.First,new challenges to the shale gas reservoir evaluation are emerged as the lack of in-depth study on“reservoir effectiveness,dynamic evaluation parameter system after fracturing and drainage and production measures after fracturing”,which leads to the serious lag of existing shale gas reservoir evaluation system behind production.Second,the evaluation of reservoir effectiveness is mainly presented as the evaluation on the lower limit of effective porosity,and is embodied in the influence of clay bound water and unconnected pores on the development of shale gas.Third,the development of shale gas reservoir evaluation follows the trend of refining the static reservoir evaluation parameters,defining the potential evaluation indexes of“automatic mitigating water blocking”and establishing the reservoir comprehensive evaluation system of“staticedynamic”combination.Fourth,a post-frac dynamic evaluation system is determined for the potential evaluation indexes of“automatic mitigating water blocking”(e.g.,wettability,water imbibition retention capacity,water imbibition expansion mode,expansion rate,and water imbibition cracking capacity).Fifth,a reservoir evaluation idea is put forward that“static evaluation of shale gas reservoir is the foundation and postfrac dynamic evaluation is the complement”,and a comprehensive reservoir evaluation system is established of“staticedy-namic”combination suitable for the evaluation of marine shale gas reservoirs in China.展开更多
This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It ...This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It is necessary to normalize conditions of information acquisition. 2) The effectiveness of comprehensive evaluation depends on the correctness of information acquisition. 3) Any evaluation results can be transformed into linguistic satisfactory degrees. 4) Linguistic values can include a great deal of information. This paper mainly deals with how to select objects to be evaluated, evaluators (panelists) and the methods of information processing, how to construct criteria of evaluation, how to normalize terms of evaluation, the results of evaluation, and the procedure of evaluation.展开更多
With global warming,heat stress is becoming a more frequent event and a major limiting factor for crop production.The evaluation of thermo-tolerance is essential for the cultivators to obtain the heat resistant genoty...With global warming,heat stress is becoming a more frequent event and a major limiting factor for crop production.The evaluation of thermo-tolerance is essential for the cultivators to obtain the heat resistant genotypes and breeders to improve the thermo-tolerance of plants.Therefore,it is very important to perfect the existing evaluation system for thermo-tolerance.In this study,30 tomato genotypes were treated with heat stress at germination,seedling and flowering stages.Each index was different and diverse in different tomato genotypes by doing variability analysis,difference analysis and Student's t test.Before principal component analysis(PCA),a positive treatment for the negative and moderation indexes was performed.After correlation analysis,the authors performed PCA(including dimensionality reduction(DR),no dimensionality reduction(NDR)and optimal index(OI)),combining with subordinate function(SF),weight and cluster analysis.No matter at germination or seedling stage,the members of the groups were basically identical for DR,NDR and OI.Then 10 tomato genotypes were chosen from 30 randomly for verification.Compared all the evaluation systems,OI was the simplest and also could get as credible results as other methods.Therefore,in this study,OI could be adopted and improve the efficiency during the evaluation.At germination stage,germination power(GP)can accurately evaluate the thermo-tolerance,and at seedling stage,it was fresh weight(FW),internode length(IL)and dry matter percentage of seedling(DMP).Finally,all the indexes in the three stages were applied correlation analysis.Seedling stage showed significant positive correlation with flowering stage.In conclusion,this work improves the current system and set up a new comprehensive evaluation method named OI,which also improves the efficiency,guarantees reliability in screening thermo-tolerance of tomato for cultivators and expedites the process of breeding for resistance.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digit...Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.展开更多
According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierar...According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierarchy grey comprehensive evaluation model of ecocity is established, then on the basis of the model, a comprehensive evaluation support system is developed, and the theoretical guidance supplied for construction of ecocity is provided.展开更多
Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers ...Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers for agricultural products was constructed based on the system comprehensive evaluation theory. Analytic hierar- chy process (AHP) was used to determine the weight of the index system of each level, and AHP and fuzzy comprehensive evaluation method were used to determine the selection steps for the third-party logistics providers for agricultural products. The method was proved to be scientific and reasonable through calculation examples.展开更多
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult...It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[...[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation.展开更多
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc...An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.展开更多
A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and qu...A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.展开更多
Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of...Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of underground space resources is the foundation for the rational use of land resources and urban planning.On the basis of the geological conditions used by preceding researchers,this study adds the analysis of two influencing factors of social and economic value,alongside existing facilities and protection needs.The evaluation index is quantified and the comprehensive quality evaluation system of underground space resources is constructed.Finally,taking the Nanshan District of Shenzhen as an example,the evaluation of underground space resources is carried out.The results show that for shallow underground space,the comprehensive quality of underground space resources development in Nanshan District is generally high.Nantou,Nanshan and Yuehai streets are recommended as areas to actively develop underground space,whereas the Qianhai and Houhai areas are recommended to be used with caution in the development and construction of their underground space.In addition,this study also provides a reference for the purposes of underground space planning in the Nanshan district of Shenzhen.展开更多
The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in...The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.展开更多
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj...To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.展开更多
Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index syste...Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.展开更多
In order to further understand and better develop and utilize wild flower resources in Hefei City,a comprehensive evaluation model of landscape value of wild flowers in the application of flower border was constructed...In order to further understand and better develop and utilize wild flower resources in Hefei City,a comprehensive evaluation model of landscape value of wild flowers in the application of flower border was constructed by field investigation and analytic hierarchy process(AHP).The application value of wild flowers in Hefei was evaluated by selecting evaluation indicators from three aspects of ornamental value,adaptability and resource potential.展开更多
As the core of the rocket system,the performance and quality of rocket engines are of paramount impor-tance.Currently,the production of aerospace model rocket engines does not differentiate the production and selectio...As the core of the rocket system,the performance and quality of rocket engines are of paramount impor-tance.Currently,the production of aerospace model rocket engines does not differentiate the production and selection of motors according to the importance of the mission,which is insufficient to ensure the high reliability requirements of important launch missions.To select rocket engines with better performance quality for more critical launch missions,this paper uses fuzzy comprehensive evaluation and TOPSIS methods based on the test value or assessment informa-tion of evaluation indicators.The method scientifically and accurately ranks the performance quality of rocket engines,choosing the engines with better performance quality for more strategic missions,and providing technical support for national management decisions.展开更多
Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, g...Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, game theory is introduced to optimize the subjective and objective weights of the index, and the comprehensive weights are obtained by normalization. The results show that the eigenvalues of the grade variables of benefit evaluation decreased from 3.43 to 2.03, indicating that the project of mountain flood disaster prevention and control in Jiangxi province brings into play the benefits year by year, and the eigenvalues tend to decrease steadily after 2012, it is consistent with the changes of various engineering measures and non-engineering measures in the project.展开更多
基金supported by the National Natural Science Foundation of China"Characterization of the Nanopore Structure and Research on Seepage in Shale Reservoir"(No.:51674044)the Applied Basic Research Project of the Sichuan Province"Research on Intelligent Evaluation System for Key Production Zone of Marine Shale Gas(Provincial Significant Project)"(No.:2019YJ0346)+1 种基金the Significant Emerging Enginecring Project of the Sichuan Province"Research on the method of evaluating the effectiveness of fracturing the shak gas reservoir on the basis of fracturing fluid flow-back law"(No.:2019JDRC0095)the Overseas Expertise Introduction Project for Discipline Innovation(111 project)"Base of Overseas Expertise Introduction for Discipline Innovation of High-Efficiency Development of Deep-Layer Marine Shale Gas"(No.:D18016).
文摘At present,shale gas exploration and development in China is faced with some problems,such as the imperfect evaluation system of reservoir effectiveness and the limitations of reservoir evaluation system on efficient development of shale gas.In order to improve the content and the standard of reservoir evaluation,this paper analyzed the shortcomings and challenges in the static evaluation of shale gas reservoirs on the basis of existing reservoir evaluation,and established a method for evaluating shale gas reservoir effectiveness and a scheme for classifying pore systems.Then,the dynamic evaluation parameters after shale fracturing and their effects on drainage and production measures were discussed.In addition,the potential evaluation parameters of“automatic mitigating water blocking”were studied,and a comprehensive reservoir evaluation system of“staticedynamic”combination was established.And the following research results were obtained.First,new challenges to the shale gas reservoir evaluation are emerged as the lack of in-depth study on“reservoir effectiveness,dynamic evaluation parameter system after fracturing and drainage and production measures after fracturing”,which leads to the serious lag of existing shale gas reservoir evaluation system behind production.Second,the evaluation of reservoir effectiveness is mainly presented as the evaluation on the lower limit of effective porosity,and is embodied in the influence of clay bound water and unconnected pores on the development of shale gas.Third,the development of shale gas reservoir evaluation follows the trend of refining the static reservoir evaluation parameters,defining the potential evaluation indexes of“automatic mitigating water blocking”and establishing the reservoir comprehensive evaluation system of“staticedynamic”combination.Fourth,a post-frac dynamic evaluation system is determined for the potential evaluation indexes of“automatic mitigating water blocking”(e.g.,wettability,water imbibition retention capacity,water imbibition expansion mode,expansion rate,and water imbibition cracking capacity).Fifth,a reservoir evaluation idea is put forward that“static evaluation of shale gas reservoir is the foundation and postfrac dynamic evaluation is the complement”,and a comprehensive reservoir evaluation system is established of“staticedy-namic”combination suitable for the evaluation of marine shale gas reservoirs in China.
基金supported by Ecole Nationale Superieure des Arts et Industries Textiles of Francethe National Science Foundation of China(Grant No.60074014)Sichuan Youth Science and Technology Foundation of China
文摘This paper systematically proposes basic requirements on normalization of comprehensive evaluation system with complex uncertain information due to human participation. Four basic academic ideas are as follows: 1) It is necessary to normalize conditions of information acquisition. 2) The effectiveness of comprehensive evaluation depends on the correctness of information acquisition. 3) Any evaluation results can be transformed into linguistic satisfactory degrees. 4) Linguistic values can include a great deal of information. This paper mainly deals with how to select objects to be evaluated, evaluators (panelists) and the methods of information processing, how to construct criteria of evaluation, how to normalize terms of evaluation, the results of evaluation, and the procedure of evaluation.
基金This work was supported by grants from the Natural Science Foundation of Youth Jiangsu Province(BIC20160579).
文摘With global warming,heat stress is becoming a more frequent event and a major limiting factor for crop production.The evaluation of thermo-tolerance is essential for the cultivators to obtain the heat resistant genotypes and breeders to improve the thermo-tolerance of plants.Therefore,it is very important to perfect the existing evaluation system for thermo-tolerance.In this study,30 tomato genotypes were treated with heat stress at germination,seedling and flowering stages.Each index was different and diverse in different tomato genotypes by doing variability analysis,difference analysis and Student's t test.Before principal component analysis(PCA),a positive treatment for the negative and moderation indexes was performed.After correlation analysis,the authors performed PCA(including dimensionality reduction(DR),no dimensionality reduction(NDR)and optimal index(OI)),combining with subordinate function(SF),weight and cluster analysis.No matter at germination or seedling stage,the members of the groups were basically identical for DR,NDR and OI.Then 10 tomato genotypes were chosen from 30 randomly for verification.Compared all the evaluation systems,OI was the simplest and also could get as credible results as other methods.Therefore,in this study,OI could be adopted and improve the efficiency during the evaluation.At germination stage,germination power(GP)can accurately evaluate the thermo-tolerance,and at seedling stage,it was fresh weight(FW),internode length(IL)and dry matter percentage of seedling(DMP).Finally,all the indexes in the three stages were applied correlation analysis.Seedling stage showed significant positive correlation with flowering stage.In conclusion,this work improves the current system and set up a new comprehensive evaluation method named OI,which also improves the efficiency,guarantees reliability in screening thermo-tolerance of tomato for cultivators and expedites the process of breeding for resistance.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
基金supported by the National Natural Science Foundation of China(72231008,72171193,and 72071153)the Science and Technology Innovation Group Program of Shaanxi Province(2024RS-CXTD-28)the Open Fund of Intelligent Control Laboratory(ICL-2023-0304).
文摘Aeroengines,often regarded as the heart of aircraft,are crucial for flight safety and performance.Comprehensive performance evaluation of aeroengines supports Prognostics and Health Management(PHM)and aeroengine digital engineering.Due to their highly integrated nature,aeroengines present challenges in performance evaluation because their test-run data are high-dimensional,large-scale,and exhibit strong nonlinear correlations among test indicators.To solve this problem,this study proposes a unified framework of the comprehensive performance evaluation of aeroengines to assess performance objectively and globally.Specifically,the network model and the dynamics model of aeroengine performance are constructed driven by test-run data,which can explain the patterns of system state changes and the internal relationship,and depict the system accurately.Based on that,three perturbations in the model are used to simulate three fault modes of aeroengines.Moreover,the comprehensive performance evaluation indexes of aeroengines are proposed to evaluate the performance dynamically from two dimensions,the coupling performance and the activity performance.Thirteen test-run qualified and four test-run failed aeroengines are used to validate and establish the qualified ranges.The results demonstrate that the comprehensive evaluation indexes can distinguish test-run qualified and test-run failed aeroengines.By changing the dynamic parameters,the comprehensive performance under any thrust and inlet guide vanes(IGV)angle can be estimated,broadening the test-run scenarios beyond a few typical states.This novel approach offers significant advancements for the comprehensive performance evaluation and management of aeroengines,paving the way for future PHM and aeroengine digital engineering developments.
文摘According to basic connotation and design principles of ecocity, a comparatively integrated index system is constructed in the paper. And at the same time using hierarchy grey comprehensive evaluation method, a hierarchy grey comprehensive evaluation model of ecocity is established, then on the basis of the model, a comprehensive evaluation support system is developed, and the theoretical guidance supplied for construction of ecocity is provided.
基金Supported by the Natural Science Foundation of Guangxi Province(2011GXNSFB018061)the High-grade Scientific Research(Cultivation)Program of Qinzhou University(2014PY-SJ03,2014PY-SJ01)~~
文摘Through the analysis on the meanings and features as well as the ad- vantages of the third-party logistics for agricultural products, the quantization index system for the selection of third-party logistics providers for agricultural products was constructed based on the system comprehensive evaluation theory. Analytic hierar- chy process (AHP) was used to determine the weight of the index system of each level, and AHP and fuzzy comprehensive evaluation method were used to determine the selection steps for the third-party logistics providers for agricultural products. The method was proved to be scientific and reasonable through calculation examples.
基金Under the auspices of National Natural Science Foundation of China(No.42301296)Postdoctoral Research Foundation of China(No.2022M723130)Key Projects of Social Science Planning Fund of Liaoning Province,China(No.L23AGL001)。
文摘It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金Supported by China Agricultural Industry Research System(CARS-23-G31)Technology Innovation Guidance Project of Changde City(CDKJJ20220265,CDKJJ2023YF33).
文摘[Objectives]The paper was to screen new varieties of long cowpea that are suitable for autumn cultivation in Hunan,as well as to develop a comprehensive evaluation method to assess their adaptability and performance.[Methods]A total of 48 long cowpea varieties were introduced,and a range of comprehensive evaluation methods was employed to assess these varieties through the collection and analysis of field data.[Results]The square Euclidean distance of 14 allowed for the classification of all varieties into eight distinct groups.Groups II,III,and V belong to the autumn dominant group within this region,while groups I and VIII belong to the intermediate group.Additionally,groups IV,VI,and VII belong to the autumn inferior group in this area.Through a comparative analysis of various comprehensive evaluation methods,it was determined that the common factor comprehensive evaluation,grey correlation method,and fuzzy evaluation method were appropriate for application in the selection of long cowpea varieties.Furthermore,the evaluation outcomes were largely consistent with the cluster pedigree diagram.[Conclusions]Through comprehensive index method,ten varieties demonstrating superior performance in autumn cultivation have been identified,including C20,C42,C29,C40,C3,C14,C18,C25,C15,and C47.The selected varieties exhibit several advantageous traits,such as a reduced growth duration,a lower position of initial flower nodes,a decreased number of branches,predominantly green young pods,elongated pod strips,thicker pod structures,an increased number of pods per plant,and higher overall yields.These characteristics render them particularly valuable for extensive cultivation.
基金by Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202312216042)Natural Science Key Research Project of Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.
文摘A model of fuzzy comprehensive evaluation for water saving irrigation system (WSIS) decision making is proposed based on establishing an index system affected by six kinds of basic factors including qualitative and quantitative indexes. The object function of WSIS is set up by using the concept of fuzzy membership degree, it is to transform characteristic vector matrix into unify membership matrix and extending the least square method to the least of weighted distance square. The optimum weighted membership degree and the inferior weighted membership degree are used to solve the object function. This method effective solves the problem of classify for fuzzy attributive indexes and the problem of optimum for the set of different attributive indexes. A case study shows that the fuzzy comprehensive evaluation model is reasonable and effective in decision making for water saving irrigation system planning.
基金The project of the Chinese Geological Survey'Survey of geothermal resources in the northern branch of Luoxiao Mountains'(Grant No.DD20221677-2)the special funds for basic scientific research business'Research on dome structure and circulation mechanism of annular hot spring chain'(Grant No.JKY202004)funded this research project。
文摘Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of underground space resources is the foundation for the rational use of land resources and urban planning.On the basis of the geological conditions used by preceding researchers,this study adds the analysis of two influencing factors of social and economic value,alongside existing facilities and protection needs.The evaluation index is quantified and the comprehensive quality evaluation system of underground space resources is constructed.Finally,taking the Nanshan District of Shenzhen as an example,the evaluation of underground space resources is carried out.The results show that for shallow underground space,the comprehensive quality of underground space resources development in Nanshan District is generally high.Nantou,Nanshan and Yuehai streets are recommended as areas to actively develop underground space,whereas the Qianhai and Houhai areas are recommended to be used with caution in the development and construction of their underground space.In addition,this study also provides a reference for the purposes of underground space planning in the Nanshan district of Shenzhen.
基金financially supported by the National Natural Science Fund, China (Grant Nos. 31200376, 41201586)the CAS Visiting Professor-Ship for Senior International Scientists (Grant No. 2013T2Z0011)
文摘The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.
基金support of the project“State Grid Corporation Headquarters Science and Technology Program(5108-202299258A-1-0-ZB)”.
文摘To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.
文摘Equipment management is one of the important parts of business administra- tion of coal. Most of coal mines take no account of their equipment management, and have no comprehensive and effective evaluation index system. Based on the analysis of the equipment evaluation measures of reform and the applications, the paper built up a comprehensive and effective evaluation index system of coal mine equipment, and im- proved the evaluation method with the use of fuzzy theory, analytic hierarchy process and entropy method.
基金Sponsored by the National Innovation Training Project for University Students in 2023(202312216024)Provincial Innovation Training Project for University Students in 2022(S202212216117)+1 种基金Key Research Project of Natural Science in Universities of Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘In order to further understand and better develop and utilize wild flower resources in Hefei City,a comprehensive evaluation model of landscape value of wild flowers in the application of flower border was constructed by field investigation and analytic hierarchy process(AHP).The application value of wild flowers in Hefei was evaluated by selecting evaluation indicators from three aspects of ornamental value,adaptability and resource potential.
文摘As the core of the rocket system,the performance and quality of rocket engines are of paramount impor-tance.Currently,the production of aerospace model rocket engines does not differentiate the production and selection of motors according to the importance of the mission,which is insufficient to ensure the high reliability requirements of important launch missions.To select rocket engines with better performance quality for more critical launch missions,this paper uses fuzzy comprehensive evaluation and TOPSIS methods based on the test value or assessment informa-tion of evaluation indicators.The method scientifically and accurately ranks the performance quality of rocket engines,choosing the engines with better performance quality for more strategic missions,and providing technical support for national management decisions.
文摘Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, game theory is introduced to optimize the subjective and objective weights of the index, and the comprehensive weights are obtained by normalization. The results show that the eigenvalues of the grade variables of benefit evaluation decreased from 3.43 to 2.03, indicating that the project of mountain flood disaster prevention and control in Jiangxi province brings into play the benefits year by year, and the eigenvalues tend to decrease steadily after 2012, it is consistent with the changes of various engineering measures and non-engineering measures in the project.