期刊文献+
共找到228篇文章
< 1 2 12 >
每页显示 20 50 100
Qualitative and Quantitative Model Checking Against Recurrent Neural Networks
1
作者 Zhen Liang Wan-Wei Liu +4 位作者 Fu Song Bai Xue Wen-Jing Yang Ji Wang Zheng-Bin Pang 《Journal of Computer Science & Technology》 CSCD 2024年第6期1292-1311,共20页
Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to t... Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to the black-box nature of deep learning. It is an urgent and challenging task to formally reason about the behaviors of RNNs. To this end, we first present an extension of linear-time temporal logic to reason about properties with respect to RNNs, such as local robustness, reachability, and some temporal properties. Based on the proposed logic, we formalize the verification obligation as a Hoare-like triple, from both qualitative and quantitative perspectives. The former concerns whether all the outputs resulting from the inputs fulfilling the pre-condition satisfy the post-condition, whereas the latter is to compute the probability that the post-condition is satisfied on the premise that the inputs fulfill the pre-condition. To tackle these problems, we develop a systematic verification framework, mainly based on polyhedron propagation, dimension-preserving abstraction, and the Monte Carlo sampling. We also implement our algorithm with a prototype tool and conduct experiments to demonstrate its feasibility and efficiency. 展开更多
关键词 recurrent neural network model checking temporal logic qualitative/quantitative verification
原文传递
Quantitative analysis modeling for the Chem Cam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network 被引量:1
2
作者 Xueqiang CAO Li ZHANG +3 位作者 Zhongchen WU Zongcheng LING Jialun LI Kaichen GUO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第11期81-90,共10页
Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance f... Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future.In this study,we explored the quantitative analysis of LIBS for the one-dimensional Chem Cam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)spectral data whose spectra are produced by the Chem Cam team using LIBS under the Mars-like atmospheric conditions.We constructed a convolutional neural network(CNN)regression model with unified parameters for all oxides,which is efficient and concise.CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models.Firstly,we explored the effects of four activation functions on the performance of the CNN model.The results show that the CNN model with the hyperbolic tangent(tanh)function outperforms the CNN models with the other activation functions(the rectified linear unit function,the linear function and the Sigmoid function).Secondly,we compared the performance among the CNN models using different optimization methods.The CNN model with the stochastic gradient descent optimization and the initial learning rate?=?0.0005 achieves satisfactory performance compared to the other CNN models.Finally,we compared the performance of the CNN model,the model based on support vector regression(SVR)and the model based on partial least square regression(PLSR).The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides.Based on the above analysis,we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS. 展开更多
关键词 laser-induced breakdown spectroscopy convolutional neural network activation function optimization method quantitative analysis
在线阅读 下载PDF
A quantitative BP neural network analysis of the relationships between ΣREE content and impact factors in the Beibu Gulf
3
作者 ZHANG Wen-li HU Hao +2 位作者 LONG Jiang-ping XU Dong ZHOU Meng-jia 《Marine Science Bulletin》 CAS 2017年第1期52-66,共15页
The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships bet... The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships between ΣREE content andprovenance, hydrodynamics, grain size and mineral distribution in the Beibu Gulf showsthat terrestrial rocks control the ΣREE composition. Both weaker hydrodynamics andfiner grain size lead to a higher ΣREE content. Relative curves revealing therelationships between individual impact factors and ΣREE content were obtained fromthe combination of qualitative and quantitative analyses of the BP neural network,which trained the position of samples, gravel content, sand content, silt content, claycontent and clay mineral content. The results are consistent with those of thequantitative analysis. The self-learning algorithm is automatically determined andcalculated quantitatively. The impact of each factor on REEs and how each factorcontrols the ΣREE distribution is identified. Thus, environmental changes and thegeological evolution of the region can be inferred based on curve variation and the geological evolution of the region can be inferred based on curve variation and theactual situation. This method also provides useful theoretical guidance for the analysisof REE enrichment and dispersion. 展开更多
关键词 REE impact factors quantitative analysis BP neural network controlvariable method
在线阅读 下载PDF
A genetic-algorithm-based neural network approach for EDXRF analysis 被引量:1
4
作者 王俊 刘明哲 +3 位作者 庹先国 李哲 李磊 石睿 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第3期18-21,共4页
In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, ... In energy dispersive X-ray fiuorescence(EDXRF), quantitative elemental content analysis becomes difficult due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a hybrid approach of genetic algorithm(GA) and back propagation(BP) neural network is proposed without considering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized BP is to get better network initial weights and thresholds. The starting point of this approach is that the reciprocal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched by selecting, crossover and mutation operations, finally a new BP neural network model is established with the optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical analysis data, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 神经网络方法 遗传算法 XRF分析 基础 初始权值 GA优化 神经网络模型 元素含量
在线阅读 下载PDF
Prediction of Forest Stock Volume Based on Neural Network Model
5
作者 Tu Yunyan Peng Daoli 《Chinese Forestry Science and Technology》 2012年第3期63-64,共2页
BP and RBF neural network to predict forest stock volume were studied,but the study in evaluating both networks’ application effects was not conducted.In order to find a higher forecast precision,more strong applicat... BP and RBF neural network to predict forest stock volume were studied,but the study in evaluating both networks’ application effects was not conducted.In order to find a higher forecast precision,more strong applicative method,the comprehensive analysis and evaluation on the two methods were carried out in the practical application. By the correlation analysis,crown density,shady-slope and sunny-slope,TM1,TM2,TM3,TM5, TM7,NDVI,TM,(4-3),TM4/3 were selected as input variables,and the forest volume of Miyun County as output variables,RBF and BP neural network models for forecasting the forest volume were established.And the neural network training step length,training time,prediction accuracy and the applicability model of the two methods were comprehensively analyzed.The results show that the RBF neural network model is superior to the BP neural network model. 展开更多
关键词 BP neural network RBF neural network comprehensive analysis and evaluation Miyun COUNTY Beijing forest volume FORECAST
原文传递
Deep Learning in Medical Image Analysis: A Comprehensive Review of Algorithms, Trends, Applications, and Challenges
6
作者 Dawa Chyophel Lepcha Bhawna Goyal +4 位作者 Ayush Dogra Ahmed Alkhayyat Prabhat Kumar Sahu Aaliya Ali Vinay Kukreja 《Computer Modeling in Engineering & Sciences》 2025年第11期1487-1573,共87页
Medical image analysis has become a cornerstone of modern healthcare,driven by the exponential growth of data from imaging modalities such as MRI,CT,PET,ultrasound,and X-ray.Traditional machine learning methods have m... Medical image analysis has become a cornerstone of modern healthcare,driven by the exponential growth of data from imaging modalities such as MRI,CT,PET,ultrasound,and X-ray.Traditional machine learning methods have made early contributions;however,recent advancements in deep learning(DL)have revolutionized the field,offering state-of-the-art performance in image classification,segmentation,detection,fusion,registration,and enhancement.This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks,highlighting both foundational models and recent innovations.The article begins by introducing conventional techniques and their limitations,setting the stage for DL-based solutions.Core DL architectures,including Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),Generative Adversarial Networks(GANs),Vision Transformers(ViTs),and hybrid models,are discussed in detail,including their advantages and domain-specific adaptations.Advanced learning paradigms such as semi-supervised learning,selfsupervised learning,and few-shot learning are explored for their potential to mitigate data annotation challenges in clinical datasets.This review further categorizes major tasks in medical image analysis,elaborating on how DL techniques have enabled precise tumor segmentation,lesion detection,modality fusion,super-resolution,and robust classification across diverse clinical settings.Emphasis is placed on applications in oncology,cardiology,neurology,and infectious diseases,including COVID-19.Challenges such as data scarcity,label imbalance,model generalizability,interpretability,and integration into clinical workflows are critically examined.Ethical considerations,explainable AI(XAI),federated learning,and regulatory compliance are discussed as essential components of real-world deployment.Benchmark datasets,evaluation metrics,and comparative performance analyses are presented to support future research.The article concludes with a forward-looking perspective on the role of foundation models,multimodal learning,edge AI,and bio-inspired computing in the future of medical imaging.Overall,this review serves as a valuable resource for researchers,clinicians,and developers aiming to harness deep learning for intelligent,efficient,and clinically viable medical image analysis. 展开更多
关键词 Medical image analysis deep learning(DL) artificial intelligence(AI) neural networks convolutional neural networks(CNNs) generative adversarial networks(GANs) transformers natural language processing(NLP) computational applications comprehensive analysis
在线阅读 下载PDF
波长注意力1DCNN近红外光谱定量分析算法研究
7
作者 陈蓓 蒋思远 郑恩让 《光谱学与光谱分析》 北大核心 2025年第6期1598-1604,共7页
近红外光谱(NIRS)技术因其快速、无损和高效的特点,广泛应用于石油、纺织、食品、制药等领域。然而传统的分析方法在处理变量多、冗余大的光谱数据时,往往存在特征提取困难和建模精度不高等问题。因此提出一种适用于近红外光谱且无需变... 近红外光谱(NIRS)技术因其快速、无损和高效的特点,广泛应用于石油、纺织、食品、制药等领域。然而传统的分析方法在处理变量多、冗余大的光谱数据时,往往存在特征提取困难和建模精度不高等问题。因此提出一种适用于近红外光谱且无需变量筛选的一维波长注意力卷积神经网络(WA-1DCNN)定量建模方法,该建模方法结构简单、通用性强、准确率高。该研究引入波长注意力机制,通过赋予不同波长数据不同的权重,增强模型对重要波长特征的捕捉能力,从而提高定量分析的准确性和鲁棒性。为了验证所提出方法的可行性,采用了公开的4种近红外光谱数据集,将所提出的算法与加入波长筛选偏最小二乘法(PLS)、支持向量回归(SVR)、极限学习机(ELM)三种传统建模方法和一维卷积神经网络(1DCNN)建模方法进行了对比,并通过模型性能指标均方根误差(RMSE)和决定系数(R^(2))对模型性能评估。结果表明没有使用波长筛选算法的WA-1DCNN建模方法性能指标均优于加入波长筛选算法的传统建模方法和1DCNN建模方法。其中在655药片数据集中测试集决定系数为0.9563,相比于1DCNN和加入波长筛选的PLS、SVR、ELM提升了4.34%、12.56%、18.42%、11.59%;在310药片数据集中测试集决定系数为0.9574,相比于1DCNN和加入波长筛选的PLS、SVR、ELM、1DCNN提升了2.72%、8.28%、7.27%、1.17%;在玉米水分和蛋白质数据集中测试集决定系数分别为0.9803和0.9685,相比于1DCNN和加入波长筛选的PLS、SVR、ELM提升了6.24%、1.48%、1.75%、6.08%和5.81%、1.85%、1.58%、2.96%;在小麦蛋白质数据集中测试集决定系数为0.9600,相比于DCNN和加入波长筛选的PLS、SVR、ELM提升了8.67%、5.79%、7.94%、0.56%。为了验证WA-1DCNN模型结构的最佳性,在4种近红外光谱数据集上进行了改变WA-1DCNN模型结构的消融实验。研究结果表明:基于波长注意力卷积神经网络是一种结构简单、通用性强、准确率高的光谱定量分析方法,该方法对于近红外光谱定量分析具有促进作用。 展开更多
关键词 近红外光谱 定量分析 波长注意力机制 一维卷积神经网络
在线阅读 下载PDF
一维卷积神经网络算法辅助便携式拉曼光谱定量分析隔夜废油掺假葵花籽油的研究
8
作者 卢明星 魏敏 +1 位作者 周福侠 何纯华 《光散射学报》 北大核心 2025年第2期205-212,共8页
隔夜废油的营养价值低、卫生堪忧且食用品质也极差,而不法商贩常将其掺入普通植物油中以降低生产成本,提高利润率,为保障人民群众的食品安全和健康,相关部门必须加强隔夜废油掺假行为的打击力度。因此,本文提出一种一维卷积神经网络算... 隔夜废油的营养价值低、卫生堪忧且食用品质也极差,而不法商贩常将其掺入普通植物油中以降低生产成本,提高利润率,为保障人民群众的食品安全和健康,相关部门必须加强隔夜废油掺假行为的打击力度。因此,本文提出一种一维卷积神经网络算法辅助便携式拉曼光谱定量分析隔夜废油掺假葵花籽油的探测方法。通过配制大范围、均匀梯度变化的掺假油品进行模拟掺假的定量分析,基于633 nm便携式拉曼光谱仪采集不同掺伪浓度的混合油品的拉曼光谱数据,然后再对原始光谱数据进行基线校正、降噪处理和归一化处理等数据预处理过,最后按照4∶1划分训练集和测试集,且通过留一法进行模型验证。结果表明便携式拉曼光谱可以提取两种不同油脂的光谱信息,且两种油脂的光谱差异主要集中在450~2000 cm^(-1)和2500~3100 cm^(-1)两个拉曼光谱指纹区;基于一维卷积神经网络算法建立了11种掺伪浓度油品的量化分析模型,实现了较为理想的量化分析,一维卷积神经网络模型测试集的决定系数为0.9922,均方根误差为0.0279。总之,本文提出的方法可实现普通植物油掺假的量化分析,该探测方法为一线应用和现场无损探测提供了一定的参考价值。 展开更多
关键词 隔夜废油 葵花籽油 一维卷积神经网络 便携式拉曼光谱 定量分析
在线阅读 下载PDF
Quantitative Diagnosis of Fault Severity Trend of Rolling Element Bearings 被引量:6
9
作者 CUI Lingli MA Chunqing +1 位作者 ZHANG Feibin WANG Huaqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1254-1260,共7页
The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condi... The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized. 展开更多
关键词 rolling bearing fault quantitative analysis back-propagation neural network wavelet packet coefficient entropy wavelet packet energy ratio
在线阅读 下载PDF
结合主导因素和多层感知机提高LIBS定量化性能
10
作者 崔佳诚 宋惟然 +3 位作者 姚蔚利 姬建训 侯宗余 王哲 《光谱学与光谱分析》 北大核心 2025年第4期1022-1027,共6页
激光诱导击穿光谱(LIBS)是一种快速崛起的原子光谱分析技术,在煤质分析等领域有广阔的应用前景。近年来,各种机器学习方法已经被用于提高LIBS煤质分析的定量分析能力,并取得了不错的效果。然而这些方法忽视了LIBS的物理机制,因而模型的... 激光诱导击穿光谱(LIBS)是一种快速崛起的原子光谱分析技术,在煤质分析等领域有广阔的应用前景。近年来,各种机器学习方法已经被用于提高LIBS煤质分析的定量分析能力,并取得了不错的效果。然而这些方法忽视了LIBS的物理机制,因而模型的鲁棒性、适用范围和可解释性受限。为了提高LIBS定量的准确度和可靠性,提出了一种基于主导因素方法(DF)结合多层感知机(MLP)人工神经网络的回归方法,称为DF-MLP。其中,主导因素模型是利用光谱领域知识提取特征变量、并基于物理规律建立的线性回归模型;MLP则是在此基础上,用机器学习方法修正主导因素模型的残差。DF-MLP首次将主导因素方法与多层感知机神经网络结合起来,可以在不降低模型复杂度的前提下充分利用光谱领域知识,提高模型的可解释性,从而改善鲁棒性和适用范围。实验中将DF-MLP与常规MLP、主导因素偏最小二乘(DF-PLSR)、主导因素支持向量机(DF-SVR)对比,在煤质分析的固定碳含量、灰分、挥发分三个任务上均取得了最优结果。均方根误差(RMSEP)相比于常规MLP分别降低了13.21%、14.54%和21.77%,比DF-SVR分别降低了14.75%,23.13%和5.99%。实验结果表明,将领域知识与神经网络方法结合是提高LIBS定量化性能的可行方式。 展开更多
关键词 激光诱导击穿光谱 主导因素 人工神经网络 煤炭 定量分析
在线阅读 下载PDF
基于高光谱成像技术的蚕丝接枝共聚增重检测
11
作者 李赫楠 王振华 +3 位作者 刘伟红 何浩男 祝成炎 田伟 《现代纺织技术》 北大核心 2025年第9期71-78,共8页
针对传统甲基丙烯酸羟乙酯(HEMA)接枝增重蚕丝检测方法存在检测效率低、破坏样本等问题,提出了一种基于高光谱成像技术的蚕丝增重率无损连续检测方法,采集了545组蚕丝样本的高光谱图像数据,并对其进行了详细表征。通过对比分析一阶导数(... 针对传统甲基丙烯酸羟乙酯(HEMA)接枝增重蚕丝检测方法存在检测效率低、破坏样本等问题,提出了一种基于高光谱成像技术的蚕丝增重率无损连续检测方法,采集了545组蚕丝样本的高光谱图像数据,并对其进行了详细表征。通过对比分析一阶导数(FD)、多元散射校正(MSC)和标准正态变换(SNV)3种光谱预处理方法的性能差异,分别构建了偏最小二乘(PLS)模型和反向传播(BP)神经网络模型,并对模型的检测精度进行了系统评估。结果表明:3种预处理方法均可以减少原始光谱中基线漂移的现象,MSC和SNV可以减小由于散射水平不同带来的光谱差异,FD可以增大重叠峰的分离程度;所建立的SNV-BP模型预测蚕丝增重率的均方根误差最小仅为1.2%,相关系数为0.99。研究结果证实了高光谱定量检测HEMA接枝增重蚕丝增重率的可行性,可为无损连续检测HEMA接枝蚕丝增重率提供新的方法和思路。 展开更多
关键词 高光谱成像 桑蚕丝 定量分析 甲基丙烯酸羟乙酯 偏最小二乘法 BP神经网络
在线阅读 下载PDF
基于拉曼光谱的变压器混合故障特征气体的改进卷积神经网络定量方法
12
作者 陈新岗 张文轩 +4 位作者 马志鹏 张知先 万福 敖怡 曾慧敏 《光谱学与光谱分析》 北大核心 2025年第4期932-940,共9页
激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低... 激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低信号维度,但也会造成其特征部分缺失或改变。针对上述问题,提出基于改进一维卷积神经网络与最小二乘支持向量回归相融合的拉曼光谱定量分析方法,即引入全局均值池化与最小二乘支持向量回归改进传统卷积神经网络,并运用Dropout方法提高模型泛化性能,防止过拟合。设计并搭建变压器故障特征气体拉曼光谱检测平台,采集7种故障特征气体及N_(2)、O_(2)混合气体的拉曼信号,在谱图2900 cm^(-1)频移附近,CH_(4)、C_(2)H_(6)气体呈现谱峰重叠,且变压器过热或局部放电故障发生时,会产生主要故障特征气体CH_(4),选择不同含量比例下的CH_(4)、C_(2)H_(6)混合气体作为研究对象具有代表性,按不同比例配制146组不同含量的CH_(4)、C_(2)H_(6)混合气体样本,检测时选用氮气作为标气,采集不同含量比例下混合气体样本的拉曼光谱数据,利用光谱数据增强方法,构建适用于深度神经网络的气体样本数据集。通过不断实验,优化网络结构参数与网络权重,完成模型训练并测试其预测效果,与多种定量模型进行对比分析,并研究光谱预处理对不同定量模型的影响,进而评估模型性能。结果表明,使用原始数据集建模时,改进卷积神经网络模型的预测精确度与回归拟合优度最佳,决定系数可达0.9998,均方根误差仅为0.0005 MPa;使用预处理后数据集建模时,改进卷积神经网络模型均方根误差为0.0023 MPa,相比使用原始数据集建模误差上升了0.0018,而传统方法误差均有所下降。该研究结果表明,所提方法与传统拉曼光谱定量方法相比,集成光谱预处理、特征提取和定量分析过程,在确保预测精确度的基础上,简化光谱分析流程,为快速、准确分析变压器混合故障特征气体提供了新的思路与参考。 展开更多
关键词 变压器 特征气体 拉曼光谱 改进一维卷积神经网络 定量分析
在线阅读 下载PDF
数字创新生态系统驱动绿色创新绩效的组态路径研究
13
作者 龚银银 张永庆 郑苏江 《统计与信息论坛》 北大核心 2025年第9期90-103,共14页
数字经济背景下,数字创新生态系统作为新兴创新范式,对提升区域绿色创新绩效与实现数字中国战略目标具有重要意义。以中国31个省份为研究对象,构建“数字创新主体—数字创新资源—数字创新环境”分析框架,采用模糊集定性比较分析(fsQCA... 数字经济背景下,数字创新生态系统作为新兴创新范式,对提升区域绿色创新绩效与实现数字中国战略目标具有重要意义。以中国31个省份为研究对象,构建“数字创新主体—数字创新资源—数字创新环境”分析框架,采用模糊集定性比较分析(fsQCA)和人工神经网络(ANN)相结合的方法探索驱动区域绿色创新绩效提升的多种联动组态路径。研究表明:(1)引致区域高绿色创新绩效的组态路径有4条,可以归纳为三种模式:“平台—设施驱动的多主体协同”模式、“制度引导的资源优化配置”模式、“平台—知识驱动的基础设施支撑”模式。(2)平台资源、数字基础设施环境、知识创造者对区域绿色创新绩效提升的贡献更显著,影响占比位于前三。(3)无论是否划分区域差异,平台资源始终是驱动高绿色创新绩效路径中的重要存在条件。同时,绿色创新绩效提升的空间差异性显著,东中部地区的路径以平台资源、数字基础设施环境、知识创造者为核心,而西部地区则突出制度支持者的导向作用。研究结果为构建区域数字创新生态系统、推动区域绿色创新高质量发展提供了参考借鉴。 展开更多
关键词 数字创新生态系统 绿色创新绩效 模糊集定性比较分析 必要条件分析 人工神经网络
在线阅读 下载PDF
基于SSA-Elman神经网络的爆破振动速度预测
14
作者 王晗 闫鹏 +3 位作者 张云鹏 巩瑞杰 袁腾 杨曦 《工程爆破》 北大核心 2025年第3期140-150,共11页
为降低爆破振动对环境产生的影响,预测爆破振动速度非常有必要。选取85组爆破振动数据,采用灰色综合关联度理论识别了影响爆破振动速度的7个重要因素,通过麻雀搜索算法(SSA)改进Elman神经网络的方法建立了爆破振动速度预测模型。研究结... 为降低爆破振动对环境产生的影响,预测爆破振动速度非常有必要。选取85组爆破振动数据,采用灰色综合关联度理论识别了影响爆破振动速度的7个重要因素,通过麻雀搜索算法(SSA)改进Elman神经网络的方法建立了爆破振动速度预测模型。研究结果表明,与Elman神经网络预测模型相比,X、Y以及Z方向的爆破振动速度SSA-Elman神经网络预测模型的预测值和实测值更接近,均方根误差(RMSE)以及平均绝对误差(MAE)较小,S_(RMSE)分别减少了54.2%、9.3%、34%,S MAE分别减少了50%、5.7%、21%,说明采用SSA优化Elman神经网络权值和阈值的方法,可以提高Elman神经网络预测模型的精度。 展开更多
关键词 爆破振动预测 ELMAN神经网络 麻雀搜索(SSA)算法 灰色综合关联度分析
在线阅读 下载PDF
基于改进Mask-R-CNN网络的导电炭黑微晶结构图像识别
15
作者 贾利川 权德泓 +4 位作者 侯帅 王智星 林泳帆 展云鹏 傅明利 《炭素技术》 北大核心 2025年第4期26-35,57,共11页
导电炭黑(CB)是电力电缆屏蔽料的关键组分,其品质决定着屏蔽料的应用电压等级。目前,我国中低压屏蔽料用CB已实现自主生产,但高压/超高压屏蔽料用高品质CB完全依赖进口。CB具有独特的“准石墨微晶-初级粒子-聚集体”多尺度物理拓扑结构... 导电炭黑(CB)是电力电缆屏蔽料的关键组分,其品质决定着屏蔽料的应用电压等级。目前,我国中低压屏蔽料用CB已实现自主生产,但高压/超高压屏蔽料用高品质CB完全依赖进口。CB具有独特的“准石墨微晶-初级粒子-聚集体”多尺度物理拓扑结构,其中微晶结构是影响CB品质的关键因素。采用高分辨率透射电子显微镜(HRTEM)可定性分析CB的微晶结构,但无法量化微晶角度、尺寸等关键参数。针对CB微晶结构难以定量化难题,选择了两款商业化的CB作为研究对象,首先通过HRTEM获取了CB微晶结构,随后引入结合了空间注意力转移机制和多尺度特征融合机制的Mask R-CNN卷积神经网络,实现了HRTEM图像的自动化增强、轮廓提取、晶格条纹识别和参数提取,提高了识别准确率至93.80%,相比基准模型提高了25%,获得了能够定量化表征CB微晶结构的关键参数(晶格角度和长度),通过X射线衍射图像验证了结果的准确性。该方法为探索CB的微晶结构特征提供了新方法和新思路。 展开更多
关键词 导电炭黑 显微结构 神经网络 量化表征 数值分析
原文传递
面向战斗力指数定量分析的局部逼近方法
16
作者 郭恩泽 刘国彬 +3 位作者 邹永杰 刘正堂 孙健 张洪德 《强激光与粒子束》 北大核心 2025年第7期149-158,共10页
战斗力指数的定量化研究是军队实现信息化建设必须解决的难题。针对战斗力指数研究存在定量研究较少、方法精度较低、鲁棒性不强等问题,以及战斗力指数函数本身为复杂规则主导、多变量数学模型、影响因素强耦合等难以拟合的限制,受模糊... 战斗力指数的定量化研究是军队实现信息化建设必须解决的难题。针对战斗力指数研究存在定量研究较少、方法精度较低、鲁棒性不强等问题,以及战斗力指数函数本身为复杂规则主导、多变量数学模型、影响因素强耦合等难以拟合的限制,受模糊逻辑理论中对规则的数学分析方法启发,提出了一种基于局部逼近的战斗力指数函数拟合方法,并结合神经网络强大的自学习和自推导能力,构建了相应的基于径向基神经网络(RBF)的定量计算模型。仿真对比实验表明,该方法比利用全局逼近的方法误差率低约2%和6%,且表现出更强的鲁棒性。该计算方法具有较强的实用性,而且具备向其他军事领域迁移的可能性,具备良好的工程应用前景。 展开更多
关键词 战斗力指数 定量分析 神经网络 局部逼近 模糊逻辑
在线阅读 下载PDF
基于HITRAN数据库的高含硫气体红外光谱定量分析
17
作者 杨正刚 曾巧 +2 位作者 奚宁凯 高进 李太福 《石油与天然气化工》 北大核心 2025年第3期130-137,共8页
目的 为提高高危气体检测的安全性与效率,减少实际操作中的安全隐患,研究基于高分辨率透射分子吸收数据库(HITRAN数据库)的高含量H_(2)S混合气体红外光谱定量分析方法,并验证其在工业、环境监测和公共安全领域中的应用可行性。方法 利... 目的 为提高高危气体检测的安全性与效率,减少实际操作中的安全隐患,研究基于高分辨率透射分子吸收数据库(HITRAN数据库)的高含量H_(2)S混合气体红外光谱定量分析方法,并验证其在工业、环境监测和公共安全领域中的应用可行性。方法 利用傅里叶变换红外光谱技术(FTIR),结合支持向量回归(SVR)和径向基函数(RBF)神经网络模型,对含H_(2)S、CO_(2)和CH_(4)的混合气体数据进行定量分析。通过HITRAN数据库生成高精度理论光谱数据,并采用光谱叠加方法模拟混合气体光谱,同时加入噪声模拟FTIR仪器的响应特性,以更接近实际检测环境。结果 该方法在多组分气体的定量分析中表现出较高的效率和精度,其中基于径向基核函数的支持向量回归(R-SVR)模型效果优于RBF神经网络模型,能够实现更高精度的检测结果。结论 为高含量H_(2)S混合气体检测提供了一种低成本、高效且安全的仿真验证手段,同时为实际应用中的多组分气体检测提供了可靠的技术支持,具有重要的工程实践价值。 展开更多
关键词 H_(2)S HITRAN数据库 红外光谱 定量分析 RBF神经网络 支持向量回归
在线阅读 下载PDF
基于CiteSpace的神经网络模型可视化分析
18
作者 吕露 《现代信息科技》 2025年第12期156-160,共5页
运用CiteSpace软件对2015—2025年中国知网(CNKI)数据库中497篇神经网络模型研究文献进行可视化计量分析,系统考察了国内神经网络模型研究的整体发展与趋势。研究结果表明,作者合作网络密度较低,尚未形成稳定的核心研究群体。研究机构... 运用CiteSpace软件对2015—2025年中国知网(CNKI)数据库中497篇神经网络模型研究文献进行可视化计量分析,系统考察了国内神经网络模型研究的整体发展与趋势。研究结果表明,作者合作网络密度较低,尚未形成稳定的核心研究群体。研究机构联系不紧密,多数作者和研究机构相对独立。研究热点与趋势围绕神经网络、深度学习、预测模型、情感分类、机器学习、预测、专利价值、认知分层等方面展开。神经网络模型研究领域已经从技术开发阶段迈向了多领域应用和跨学科融合的新时代,未来的研究将更加注重技术的可解释性和社会价值的实现。 展开更多
关键词 神经网络模型 CITESPACE 可视化分析 计量分析
在线阅读 下载PDF
MITRE ATT&CK-Driven Threat Analysis for Edge-IoT Environment and a Quantitative Risk Scoring Model
19
作者 Tae-hyeon Yun Moohong Min 《Computer Modeling in Engineering & Sciences》 2025年第11期2707-2731,共25页
The dynamic,heterogeneous nature of Edge computing in the Internet of Things(Edge-IoT)and Industrial IoT(IIoT)networks brings unique and evolving cybersecurity challenges.This study maps cyber threats in Edge-IoT/IIoT... The dynamic,heterogeneous nature of Edge computing in the Internet of Things(Edge-IoT)and Industrial IoT(IIoT)networks brings unique and evolving cybersecurity challenges.This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics,Techniques,and Common Knowledge(ATT&CK)framework by MITRE and introduces a lightweight,data-driven scoring model that enables rapid identification and prioritization of attacks.Inspired by the Factor Analysis of Information Risk model,our proposed scoring model integrates four key metrics:Common Vulnerability Scoring System(CVSS)-based severity scoring,Cyber Kill Chain–based difficulty estimation,Deep Neural Networks-driven detection scoring,and frequency analysis based on dataset prevalence.By aggregating these indicators,the model generates comprehensive risk profiles,facilitating actionable prioritization of threats.Robustness and stability of the scoring model are validated through non-parametric correlation analysis using Spearman’s and Kendall’s rank correlation coefficients,demonstrating consistent performance across diverse scenarios.The approach culminates in a prioritized attack ranking that provides actionable guidance for risk mitigation and resource allocation in Edge-IoT/IIoT security operations.By leveraging real-world data to align MITRE ATT&CK techniques with CVSS metrics,the framework offers a standardized and practically applicable solution for consistent threat assessment in operational settings.The proposed lightweight scoring model delivers rapid and reliable results under dynamic cyber conditions,facilitating timely identification of attack scenarios and prioritization of response strategies.Our systematic integration of established taxonomies with data-driven indicators strengthens practical risk management and supports strategic planning in next-generation IoT deployments.Ultimately,this work advances adaptive threat modeling for Edge/IIoT ecosystems and establishes a robust foundation for evidence-based prioritization in emerging cyber-physical infrastructures. 展开更多
关键词 MITRE ATT&CK edge environment IoT threat analysis quantitative analysis deep neural network CVSS risk assessment scoring model
在线阅读 下载PDF
A physics-informed deep learning framework for spacecraft pursuit-evasion task assessment 被引量:1
20
作者 Fuyunxiang YANG Leping YANG Yanwei ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期363-376,共14页
Qualitative spacecraft pursuit-evasion problem which focuses on feasibility is rarely studied because of high-dimensional dynamics,intractable terminal constraints and heavy computational cost.In this paper,A physics-... Qualitative spacecraft pursuit-evasion problem which focuses on feasibility is rarely studied because of high-dimensional dynamics,intractable terminal constraints and heavy computational cost.In this paper,A physics-informed framework is proposed for the problem,providing an intuitive method for spacecraft threat relationship determination,situation assessment,mission feasibility analysis and orbital game rules summarization.For the first time,situation adjustment suggestions can be provided for the weak player in orbital game.First,a dimension-reduction dynamics is derived in the line-of-sight rotation coordinate system and the qualitative model is determined,reducing complexity and avoiding the difficulty of target set presentation caused by individual modeling.Second,the Backwards Reachable Set(BRS)of the target set is used for state space partition and capture zone presentation.Reverse-time analysis can eliminate the influence of changeable initial state and enable the proposed framework to analyze plural situations simultaneously.Third,a time-dependent Hamilton-Jacobi-Isaacs(HJI)Partial Differential Equation(PDE)is established to describe BRS evolution driven by dimension-reduction dynamics,based on level set method.Then,Physics-Informed Neural Networks(PINNs)are extended to HJI PDE final value problem,supporting orbital game rules summarization through capture zone evolution analysis.Finally,numerical results demonstrate the feasibility and efficiency of the proposed framework. 展开更多
关键词 Spacecraft pursuit-evasion qualitative differential game Physics-Informed neural networks(PINNs) Reachability analysis Hamilton-Jacobi-Isaacs(HJI) Partial Differential Equations(PDEs)
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部