期刊文献+
共找到307篇文章
< 1 2 16 >
每页显示 20 50 100
Evolution of Macrofauna Structure during the Composting Process of Household Waste
1
作者 Mrabet Loubna Abdechahid Loukili +4 位作者 Bahouar El Houssaine Bouasria Hicham Youssef S’hih Abba El Hassam Belghyti Driss 《Journal of Environmental & Earth Sciences》 2025年第1期632-640,共9页
The fact that Morocco is an agricultural country and the large volume of biodegradable waste produced by the population make composting so important.The degradation of organic matter is facilitated by faunal and flora... The fact that Morocco is an agricultural country and the large volume of biodegradable waste produced by the population make composting so important.The degradation of organic matter is facilitated by faunal and floral macro and micro-organisms that act in different stages of maturation;studies on this fauna are quite rare both nationally and internationally.On a sample of two tons of household waste,we documented invertebrates that colonized compost heaps and then assessed the changes in the structure of the invertebrate population during the different phases.Our study revealed the presence of several zoological groups colonizing the compost heaps during the different composting phases;we noted the presence of:(1)Macroscopic invertebrates,in order of number of individuals:insect larvae,ants,earthworms,sowbugs,spiders,springtails,and millipedes,and(2)Microscopic invertebrates,the most abundant in terms of individuals:mites and nematodes.As for the order of appearance,we observed that insect larvae were the first to colonize the compost heap from the very first days of installation,followed by woodlice observed during the thermophilic phase and disappearing towards the end of the process.Earthworms were observed during the end of the thermophilic phase,while springtails were observed more during the cooling and maturation phases.Our study revealed the presence of a good quality of fauna during the composting process,which are indicators of good compost quality and play a major role in the circulation of nutrients,thus ensuring the provision of essential elements for plant nutrition. 展开更多
关键词 Household Waste FAUNA EVOLUTION COMPOSTING Quality of Compost Morocco
在线阅读 下载PDF
Impact of Iron Nanoparticles,Carbon Nanotube,and Biostimulatory Agents Application on Mushroom(Agaricus bisporus)
2
作者 Mustafa Algarawi Hayyawi A.W.Al-Juthery Rukaibaa A.Chechan 《Research in Ecology》 2025年第2期106-117,共12页
Enhancing A.bisporus L.culture media with nanomaterials and some biostimulants is important for in improving mushroom productivity quantitatively and qualitatively.Magnetic iron nanoparticles(N-FeO),carbon nanotube(CN... Enhancing A.bisporus L.culture media with nanomaterials and some biostimulants is important for in improving mushroom productivity quantitatively and qualitatively.Magnetic iron nanoparticles(N-FeO),carbon nanotube(CNTs)suspensions,effective microorganisms(EM)bio-fertilisers,and growth stimulants(Atonik)were used individually and in combination to enhance the compost culture media.Quantitative and qualitative traits of the mushroom yield were measured.In a simple oOne-Wway experiment that included 16 treatments—Ssingle agents,two-,three-,and four-way Ccombinations and three replications—,the statistical analysis results of Duncan’'s test showed.Tthat the individual impact of the applied study treatments and their combined synergistic effects resulted in a significant increase in the traits of the number of fruiting bodies,fruiting body rate,yield quantity,mushroom biological efficiency ratio,stem length,stem diameter,head diameter,head thickness,carbohydrates content,protein content,ash,and dry matter.The application of Atonik itself resulted in the highest values of fruiting body number,yield,biological efficiency,and stem length,which were respectively were 128.33 body bags^(-1),2814 g bag-1,37.52%,and 3.03 cm,compared to the control of 32.33 body bags^(-1),749 g bag-1,9.98%,and 1.72 cm.The treatments NFeO+CNT+EM+ATO resulted in a significant increase in the traits of the fruiting body rate,stem length,and carbohydrate content by 32.69 g,3.40 cm,and 16.78%,respectively,compared to the control of 22.97 g,1.72 cm,and 8.16%,respectively. 展开更多
关键词 Agaricus bisporus L. COMPOST BIO-FERTILIZER Growth Enhancers Iron Nanoparticles Carbon Nanotubes
在线阅读 下载PDF
Rice residue management:Alternative strategies and emerging technologies for a sustainable ecosystem
3
作者 Jagdish PARSHAD Ravinder KUMAR +10 位作者 Vinod CHHOKAR Nagaraj PATIL Vikas BENIWAL Namita SINGH Ajay KUMAR Nitesh SINGH Rajesh YOGI Mukesh KUMAR Prashant VIKRAM Avnish CHAUHAN Anil KUMAR 《Pedosphere》 2025年第1期53-66,共14页
Rice straw,which is produced after the harvest of rice,is a major agricultural waste in the world.Rice straw has a high carbon/nitrogen ratio and is more resistant to microbial degradation than other straws because it... Rice straw,which is produced after the harvest of rice,is a major agricultural waste in the world.Rice straw has a high carbon/nitrogen ratio and is more resistant to microbial degradation than other straws because its main constituents are cellulose and hemicelluloses encrusted by lignin.When rice straw is burned,hazardous substances such as carbon dioxide,methane,carbon monoxide,and nitrogen monoxide are released into the air as smoke(less than 10μm-sized particles).The rise in the burning of rice straw has contributed to too many accidents and health issues in the general population residing in Haryana,Punjab,and Uttar Pradesh of India.These states are being urged by the National Green Tribunal to generate money instead of burning rice straw.Even though these lignocellulosic materials might be beneficial,not much has been carried out with them.This overview covers the properties of rice straw and husks,the numerous procedures used to create valuable products,and various applications that may be made for them.These include energy sources,environmental adsorbents,building supplies,and specialist commodities. 展开更多
关键词 BIOCHAR BIOMETHANATION BURNING COMPOSTING in situ decomposition LIGNOCELLULOSIC MULCHING rice husk rice straw
原文传递
Improving enzymatic degradation of unpretreated poly(ethylene terephthalate)
4
作者 Yufeng Cao La Xiang +4 位作者 Jasmina Nikodinovic-Runic Veselin Maslak Jian-Ming Jin Chaoning Liang Shuang-Yan Tang 《Chinese Journal of Catalysis》 2025年第4期375-389,共15页
Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated P... Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated PET materials with high crystallinity remain insufficient.Here,we endeavored to improve the degradation capability of a WCCG mutant of leaf-branch compost cutinase(LCC)on a unpretreated PET substrate(crystallinity>40%)by employing iterative saturation mutagenesis.Using this method,we developed a high-throughput screening strategy appropriate for unpretreated substrates.Through extensive screening of residues around the substrate-binding groove,two variants,WCCG-sup1 and WCCG-sup2,showed good depolymerization capabilities with both high-(42%)and low-crystallinity(9%)substrates.The WCCG-sup1 variant completely depolymerized a commercial unpretreated PET product in 36 h at 72℃.In addition to enzyme thermostability and catalytic efficiency,the adsorption of enzymes onto substrates plays an important role in PET degradation.This study provides valuable insights into the structure-function relationship of LCC. 展开更多
关键词 Iterative saturation mutagenesis Poly(ethylene terephthalate) depolymerization efficiency Substrate adsorption Leaf-branch compost cutinase Unpretreated poly(ethylene terephthalate)
在线阅读 下载PDF
Enhanced removal of antibiotic resistance genes during chicken manure composting after combined inoculation of Bacillus subtilis with biochar 被引量:4
5
作者 Zewen Wu Luan Zhang +1 位作者 Hao Lin Shungui Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期274-284,共11页
This study explored the combined effects of Bacillus subtilis inoculation with biochar on the evolution of bacterial communities,antibiotic resistance genes(ARGs),and mobile genetic elements(MGEs)during the composting... This study explored the combined effects of Bacillus subtilis inoculation with biochar on the evolution of bacterial communities,antibiotic resistance genes(ARGs),and mobile genetic elements(MGEs)during the composting of chicken manure.The results showed that B.subtilis inoculation combined with biochar increased bacterial abundance and diversity as well as prolonged the compost thermophilic period.Promoted organic matter biodegradation and facilitated the organic waste compost humification process,reduced the proliferation of ARGs by altering the bacterial composition.Firmicutes and Actinobacteriota were the main resistant bacteria related to ARGs and MGEs.The decrease in ARGs and MGEs was associated with the reduction in the abundance of related host bacteria.Compost inoculation with B.subtilis and the addition of biochar could promote nutrient transformation,reduce the increase in ARGs and MGEs,and increase the abundance of beneficial soil taxa. 展开更多
关键词 Antibiotic resistance gene Bacillus subtilis Bacterial community BIOCHAR COMPOSTING
原文传递
Enhanced organic degradation and microbial community cooperation by inoculating Bacillus licheniformis in low temperature composting 被引量:5
6
作者 Jing Su Kaiyun Zhou +11 位作者 Wenjie Chen Shaoqi Xu Ziwei Feng Yuan Chang Xiaoyan Ding Yi Zheng Xingling Tao Ake Zhang Yue Wang Ji Li Guochun Ding Yuquan Wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第9期189-200,共12页
Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature.The aim of this study was to explore the effect of inoculating Bacillus lichenifor... Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature.The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation,enzyme activity,microbial community interaction,and microbial metabolic function.The results showed that after inoculating B.licheniformis,temperature increased to 47.8℃ on day2,and the degradation of readily degraded carbohydrates(RDC)increased by 31.2%,and the bioheat production increased by 16.5%.There was an obvious enhancement of extracellular enzymes activities after inoculation,especially amylase activity,which increased by 7.68 times on day 4.The inoculated B.licheniformis colonized in composting as key genus in the start-up phase.Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components(RDC,lipid,protein,and lignocellulose)degradation in the start-up phase.Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism,glycolysis/gluconeogenesis,pyruvate metabolism,etc.,were improved by increasing the abundance of related functional genes after inoculation.In conclusion,inoculating B.licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting. 展开更多
关键词 Microbial agent Organic matter degradation Microbial interaction Food waste Low temperature composting
原文传递
Enhanced thermoelectric performance enabled by compositing ZrO_(2)in n-type SiGe alloy with low thermal conductivity 被引量:2
7
作者 Meng-Fei Wang Hua-Jun Lai +6 位作者 Ji-Sheng Liang Jun-Liang Chen Wang-Yang Ding Qi Zhou Ying Peng Cheng-Yan Liu Lei Miao 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1167-1176,共10页
SiGe-based thermoelectric(TE)materials have gained increasing interests due to their low maintenance costs,environmental friendliness and long lifespan.However,the intrinsically high thermal conductivity of Si-based m... SiGe-based thermoelectric(TE)materials have gained increasing interests due to their low maintenance costs,environmental friendliness and long lifespan.However,the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties.In this investigation,a zirconia(ZrO_(2))composite strategy was applied to an n-type SiGe alloy,tremendously elevating its TE performance.After mechanical alloying and spark plasma sintering(SPS)processes,the ZrO_(2)induced the formation of nanopores in the SiGe matrix via phosphorus adsorption.Moreover,such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity,from 2.83 to 1.59 W·m^(-1)·K^(-1)at 873 K.Additionally,reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity,The power factor didn't deteriorate significantly,either,as its maximum of~3.43 mW·m^(-1-)K^(-2)was achieved at 873 K with(Si_(0.8)Ge_(0.2))_(0.097)P_(0.03)(ZrO_(2))_(0.003).In short,a peak figure of merit(ZT)of~1.27 at 873 K and an average ZT~0.7 from 323 to 873 K were obtained.This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO_(2),illustrating a novel strategy to optimize the TE properties of bulk materials. 展开更多
关键词 THERMOELECTRIC SiGe alloy ZrO2 composting P element adsorption NANOPORES
原文传递
Synergistic effects of chemical additives and mature compost on reducing H_2S emission during kitchen waste composting 被引量:1
8
作者 Yongdi Liu Haihou Wang +9 位作者 Hao Zhang Yueyue Tao Rui Chen Sheng Hang Xiaoyan Ding Meidi Cheng Guochun Ding Yuquan Wei Ting Xu Ji Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期84-92,共9页
Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation... Additives could improve composting performance and reduce gaseous emission,but few studies have explored the synergistic of additives on H_(2)S emission and compost maturity.This research aims to make an investigation about the effects of chemical additives and mature compost on H_(2)S emission and compost maturity of kitchen waste composting.The results showed that additives increased the germination index value and H_(2)S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H_(2)S emission reduction(85%).Except for the treatment with only chemical additives,the total sulfur content increased during the kitchen waste composting.The proportion of effective sulfur was higher with the addition of chemical additives,compared with other groups.The relative abundance of H_(2)S-formation bacterial(Desulfovibrio)was reduced and the relative abundance of bacterial(Pseudomonas and Paracoccus),which could convert sulfur-containing substances and H_(2)S to sulfate was improved with additives.In the composting process with both chemical additives and mature compost,the relative abundance of Desulfovibrio was lowest,while the relative abundance of Pseudomonas and Paracoccus was highest.Taken together,the chemical additives and mature compost achieved H_(2)S emission reduction by regulating the dynamics of microbial community. 展开更多
关键词 Kitchen waste composting Sulfur conversion Chemical additives Mature compost Microbial community
原文传递
Upgrade from aerated static pile to agitated bed systems promotes lignocellulose degradation in large-scale composting through enhanced microbial functional diversity 被引量:1
9
作者 Hanxia Yu Haoyan Xiao +4 位作者 Huiyu Deng Adam Frew Md.Akhter Hossain Wenbing Tan Beidou Xi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第10期55-66,共12页
Composting presents a viable management solution for lignocellulose-rich municipal solid waste.However,our understanding about the microbial metabolic mechanisms involved in the biodegradation of lignocellulose,partic... Composting presents a viable management solution for lignocellulose-rich municipal solid waste.However,our understanding about the microbial metabolic mechanisms involved in the biodegradation of lignocellulose,particularly in industrial-scale composting plants,remains limited.This study employed metaproteomics to compare the impact of upgrading from aerated static pile(ASP)to agitated bed(AB)systems on physicochemical parameters,lignocellulose biodegradation,and microbial metabolic pathways during largescale biowaste composting process,marking the first investigation of its kind.The degradation rates of lignocellulose including cellulose,hemicellulose,and lignin were significantly higher in AB(8.21%-32.54%,10.21%-39.41%,and 6.21%-26.78%)than those(5.72%-23.15%,7.01%-33.26%,and 4.79%-19.76%)in ASP at three thermal stages,respectively.The AB system in comparison to ASP increased the carbohydrate-active enzymes(CAZymes)abundance and production of the three essential enzymes required for lignocellulose decomposition involving a mixture of bacteria and fungi(i.e.,Actinobacteria,Bacilli,Sordariomycetes and Eurotiomycetes).Conversely,ASP primarily produced exoglucanase andβ-glucosidase via fungi(i.e.,Ascomycota).Moreover,AB effectively mitigated microbial stress caused by acetic acid accumulation by regulating the key enzymes involved in acetate conversion,including acetyl-coenzyme A synthetase and acetate kinase.Overall,the AB upgraded from ASP facilitated the lignocellulose degradation and fostered more diverse functional microbial communities in large-scale composting.Our findings offer a valuable scientific basis to guide the engineering feasibility and environmental sustainability for large-scale industrial composting plants for treating lignocellulose-rich waste.These findings have important implications for establishing green sustainable development models(e.g.,a circular economy based onmaterial recovery)and for achieving sustainable development goals. 展开更多
关键词 Bacterial and fungal community Large-scale composting Lignocellulose degradation Microbial metabolism Metaproteomic analysis
原文传递
Insights into effects of thermotolerant nitrifying and sulfur-oxidizing inoculants on nitrogen-sulfur co-metabolism in sewage sludge composting
10
作者 Tingting Hou Yujie Zhou +6 位作者 Rongchun Du Jiali Liu Weiguang Li Shumei Zhang Muzi Li Junhong Chu Liqiang Meng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第10期76-86,共11页
In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost... In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost.The effects of inoculation on physical and chemical parameters,ammonia and hydrogen sulfide release,nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied.The results showed that inoculation of TNB and TSOB increased the temperature,pH,OM degradation,C/N ratio and germination index(GI)of compost.Compared with the control treatment(CK),the addition of inoculants reduced the release of NH_(3) and H_(2)S,and transformed them into nitrogen and sulfur compounds,the hydrolysis of polymeric ferrous sulfate was promoted,resulting in relatively high content of sulfite and sulfate.At the same time,the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds. 展开更多
关键词 Sewage sludge COMPOSTING Inoculation Thermotolerant nitrifying bacteria Thermotolerant sulfurized oxidizing bacteria
原文传递
Comparative Effects of Compost and Arbuscular Mycorrhizal Fungi Versus NPK on Agro-Physiological,Biochemical and Tolerance Responses of Tomatoes to Drought
11
作者 Abderrahim Boutasknit Wissal Benaffari +4 位作者 Mohamed Anli Abdoussadeq Ouamnina Amine Assouguem Rachid Lahlali Abdelilah Meddich 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第12期3589-3616,共28页
Drought stress(DS)and overuse of chemical fertilizers cause considerable losses in the agro-physiological as well as biochemical performance of plants.In this context,considerable effort will be required to replace ch... Drought stress(DS)and overuse of chemical fertilizers cause considerable losses in the agro-physiological as well as biochemical performance of plants.In this context,considerable effort will be required to replace chemical fertilizers(NPK)with biostimulants as an important approach to enhance the productivity and sustainability of agriculture.Here,we evaluated the effect of separating and/or combining arbuscular mycorrhizal fungi(AMF)with compost(C)in comparison to the use of NPK on the growth,physiological and biochemical of tomatoes under DS.The findings showed that DS significantly reduced the growth and physiological attributes of tomatoes.Furthermore,the treatment of AMF and C showed better results in agro-physiological and fruit quality compared to the NPK and control under DS.The combination of AMF and C(C+AMF)increased leaf water potential by 18.8%,stomatal conductance by 14.1%,fresh fruit weight by 25.0%,shoot dry matter by 104%and root dry matter by 56.1%compared to the control under DS.The study revealed that C+AMF caused a significant increase in sugar,protein and activity of polyphenoloxidase and peroxidase in leaves and fruits,and an opposite trend was observed in the case of malonaldehyde and hydrogen peroxide compared to NPK and control under DS.In conclusion,it is recommended to utilize the combination of AMF with compost to enhance the growth,yield,osmotic adjustment,and antioxidant capacity of tomato plants.This approach can boost their resilience to water stress and improve overall fruit quality. 展开更多
关键词 Biostimulants Rhizophagus irregularis COMPOST water stress Lycopersicon esculantum tolerance
在线阅读 下载PDF
Sustainable Management of Biodegradable Waste in Guinea: Effect of Compost on Eggplant and Chilli Crop Yields Pepper
12
作者 Mamadou Yaya Baldé Mamadou Aliou Diallo +3 位作者 Mariama Barry Dian Foula Diallo Mamadouba Bangaly Camara Nyankoï Soropogui 《Agricultural Sciences》 2024年第9期1009-1017,共9页
The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the curre... The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase. 展开更多
关键词 Sustainable Waste Management COMPOST EGGPLANT CHILLI YIELD IREG CREGED
在线阅读 下载PDF
Comparative Analysis of Lactuca sativa Growth Using Compost Versus Conventional Soil
13
作者 Sofia Huber Galen Papkov +4 位作者 Xiusheng Yang John Griffis Kathryn Jackson Sarah Bauer Ankit Kumar Singh 《Agricultural Sciences》 2024年第11期1223-1235,共13页
Conventional agricultural techniques have been degrading American soils nationwide since the beginnings of modern-day agriculture through practices such as soil tilling, using nitrogen synthetic fertilizers, and monoc... Conventional agricultural techniques have been degrading American soils nationwide since the beginnings of modern-day agriculture through practices such as soil tilling, using nitrogen synthetic fertilizers, and monocultural systems. These techniques contribute to degrading soil health, mass emissions of carbon dioxide into the atmosphere, and decreased biodiversity. Regenerative agriculture techniques include the utilization of cover crops, compost, no-tillage, the integration of livestock, and crop rotation. The APS Laboratory for Sustainable Agriculture focused on the effectiveness of compost by comparing the growth of lettuce in four different treatments: 100% Compost (100%C), 75% Compost 25% Miracle-Gro (75%C - 25%MG), 50% Compost 50% Miracle-Gro (50%C - 50%MG), and finally, 100% Miracle-Gro (100%MG). The lettuce seeds were kept in a growth tent for fifteen days during their period of germination before being transferred to four 1 × 1 × 0.15 m plots in the Food Forest at Florida Gulf Coast University (FGCU) for the 60-day growth period. The lettuce crops grew to full bloom and were ready for harvest. Sampling events took place every six days in which crop growth data including wet weight (g), dry weight (g), nitrogen (mg/g), chlorophyll concentration (mg/cm2), and leaf area (LA) (cm2) were collected. Statistical analysis was then conducted from the data. Based on the statistical tests conducted at the 5% significance level using R statistical software, soil treatment type was found to be significant (p = 0.0002). Soil treatment type was shown to have significantly impacted wet weight (p χ2 [3] = 3.91, p = 0.2717). 100%C and 100%MG of soil treatments produced the most successful lettuce crops. The 100%C soil treatment yielded lettuce crops with the heaviest wet weights and the largest LAs, and the 100% MG soil treatment yielded the heaviest dry weights and the highest nitrogen readings. Results demonstrate the effectiveness and feasibility of using compost as a technique for regenerative agriculture. 展开更多
关键词 COMPOST Conventional Agriculture LETTUCE Regenerative Agriculture Soil Health
在线阅读 下载PDF
Effect of Chicken Manure, Compost and Cow Dung on the Growth and Yield of Sweet Potato [Ipomoea batatas (L.) Lam.] under Guinea Savannah Agroecological Zone of Ghana
14
作者 Issah A. Abukari Iddrisu Yahaya +9 位作者 Edward E. Carey Putri Erna Abidin Kwabena Acheremu Joseph Adjebeng-Danquah Issah Sugri George Yakubu Mahama Julius Yirzagla Abdul-Latif Abdul-Aziz Mutari Abubakari Ahmed Seidu 《Agricultural Sciences》 2024年第11期1271-1289,共19页
Twelve percent (12%) of Ghanaians are food insecure, and climate-smart crops like sweet potatoes are required to help end poverty. Small-scale farmers in Ghana who produce low-technology, subsistence crops, such as sw... Twelve percent (12%) of Ghanaians are food insecure, and climate-smart crops like sweet potatoes are required to help end poverty. Small-scale farmers in Ghana who produce low-technology, subsistence crops, such as sweet potatoes, are more food secure than those who do not. This study was initiated to investigate the effect of chicken manure, compost, and cow dung on the growth and yield of “apomuden”, “SARI-Nyoriberigu”, “SARI-Nan” and “kufour” sweet potato under the Guinea Savannah agroecological zone of Ghana. Organic fertilizer increased leaf chlorophyll content and leaf area index. The application of cow dung, chicken manure and compost in 2015 significantly increased total storage root yield by 38%, 55% and 98%, 62%, 45% and 37%, 52%, 61% and 44%, and 33%, 36% and 28% for SARI-Nyoriberigu, Kufour, SARI-Nan and Apomuden, respectively, when compared to the untreated check. In 2016, and in comparison with the untreated check, the application of cow dung, chicken manure and compost increased total storage root yield by 42%, 61% and 93%, 69%, 49% and 41%, 57%, 67% and 48%, and 36%, 39% and 30% for SARI-Nyoriberigu, Kufour, SARI-Nan and Apomuden, respectively. Hence, the application of organic fertilizers will increase sweet potato yield, give higher returns to resource-poor smallholder farmers and contribute to enhancing food and nutrition security. 展开更多
关键词 Sweet Potato Food Security Storage Roots Organic Fertilizer Chicken Manure Cow Dung and Compost
在线阅读 下载PDF
Split Addition of Nitrogen-Rich Substrate at Thermophilic and Mesophilic Stages of Composting: Effect on Green House Gases Emission and Quality of Compost
15
作者 Boakye Acheampong Kodwo Miezah +2 位作者 Enoch Bessah Benedicta Essel Ayamba Francis Kemausour 《Open Journal of Soil Science》 2024年第2期133-158,共26页
Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed ... Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost. 展开更多
关键词 COMPOST Nitrogen-Rich Substrate THERMOPHILIC MESOPHILIC Greenhouse Gas Emissions
在线阅读 下载PDF
Assessment of the Characteristics of the Municipal Solid Waste Compost in Lebanon
16
作者 Rana Sawaya Jalal Halwani +2 位作者 Nada Nehme Hiba Alawiye Walaa Diab 《Journal of Geoscience and Environment Protection》 2024年第5期17-39,共23页
Waste management is crucial due to the fast increase of human population, causing an increase in solid waste generation which if not properly managed causes environmental problems. Around 57% of the wastes generated f... Waste management is crucial due to the fast increase of human population, causing an increase in solid waste generation which if not properly managed causes environmental problems. Around 57% of the wastes generated from homes are made up of green material (fruits, vegetables…). Thus, reusing and recycling green wastes through composting is one way of reducing the waste load to landfills. Composting is the transformation of raw organic materials into organic soil amendments that provide nutrients to crops and enhance the tilth, fertility, and productivity of soils. Aerobic windrow composting system at Sukomi Greensite facility located at Karantina is performed, where materials biodegrade under controlled conditions to produce compost. However, assessment of the quality of the compost is fundamental in order to determine its usages. Thus, regular testing of physical, chemical and biological parameters was performed for adequate monitoring purposes. The basic objective of this study was to determine the characteristics of the Lebanese municipal solid waste compost on a yearly basis and compare these characteristics amongst the years. Hence, each parameter was tested and compared to the BNQ international Canadian standards for proper classification of the compost and adequate identification of its usages. The preliminary data obtained were statistically diagnosed through principal component analysis by Spadv55 software. All the data reflected the normal content value of the studied parameters with minor differences between the years except for year 2007 which demonstrated higher levels of Potassium, Phosphate, Lead and Cadmium. The characteristics of the compost enabled it to be used as a soil amendment on all types of agricultural and landscape commodities at the adequate dosages and proper timing. This data will additionally reflect the efficiency of the solid waste management practices adopted via highlighting the importance of the implementation of the integrated solid waste management practices. 展开更多
关键词 COMPOSTING Organic Material Lebanon CONTAMINATION Solid Waste Management
在线阅读 下载PDF
Effect of Different Rates and Mixtures of Solid Household Waste and Faecal Sludge-Based Composts on Soil Fertility and Productivity of Sunflower (Helianthus annuus L.) in Dschang, West Cameroon
17
作者 Romary Ngnipa Tchinda Rodrigue Emmanuel Kenne +7 位作者 Primus Azinwi Tamfuh Jovanie Gladys Kenfack Doris Temgoua Zombou Désiré Évariste Moundjeu Tsafack   Richard Tanwi Ghogomu Emile Temgoua Dieudonné Bitom Oyono 《Open Journal of Soil Science》 2024年第7期448-470,共23页
The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The pr... The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production. 展开更多
关键词 SUNFLOWER Faecal Sludge Household Waste COMPOST Soil Fertility
在线阅读 下载PDF
Arbuscular Mycorrhizal Fungi Improve Drought Tolerance of Quinoa Grown in Compost-Amended Soils by Altering Primary and Secondary Metabolite Levels
18
作者 Wissal Benaffari Fatima-Ezzahra Soussani +5 位作者 Abderrahim Boutasknit Salma Toubali Abir Ben Hassine Hala Ben Ahmed Rachid Lahlali Abdelilah Meddich 《Phyton-International Journal of Experimental Botany》 2024年第9期2285-2302,共18页
Quinoa(Chenopodium quinoa)has recently gained popularity as a pseudo-cereal cultivated in various countries due to the nutritional and antioxidant benefits of its seeds,and its capacity to persist in water-stressed en... Quinoa(Chenopodium quinoa)has recently gained popularity as a pseudo-cereal cultivated in various countries due to the nutritional and antioxidant benefits of its seeds,and its capacity to persist in water-stressed environments.Our study aimed to assess the effects of native arbuscular mycorrhizal fungi(AMF)and local organic amendments on the metabolic responses and antioxidant activity of quinoa seeds under water-stressed conditions.To this end,quinoa plants were grown in soils inoculated with an indigenous mycorrhizal consortium AMF and amended with two types of compost from horse manure(HM)and green waste(GW)under two water regimes:well-watered(WW)75%and 25%field capacity(FC).The primary metabolite contents(sugars and total protein)of quinoa seeds were measured.Additionally,the study involved identifying and quantifying secondary metabolites,particularly phenolic compounds(quercetin,vanillic acid,rutin,coumaric acid,kaempferol,and tetraterpenoids carotenoids)in quinoa seeds were determined using high-performance liquid chromatography(HPLC).The individual application of AMF and HM increased the total protein content in quinoa seeds by 8%and 6%,respectively,in contrast to the water-stressed control plants(WS).Conversely,the combined application of AMF,GW,and HM led to a 21%increase in sugar content compared to the control seeds under water-stressed conditions.Additionally,HPLC analysis identified five phenolic compounds,namely quercetin,kaempferol,vanillic acid,coumaric acid,and rutin.Under WS conditions,the application of biostimulants,whether used individually or in combination,brought about a rise in the identified phenolic compounds,except rutin,compared to controls.Consequently,these findings suggest that using AMF,either alone or in combination with HM and/or GW,can enhance the total protein content of quinoa seeds,help sustain higher levels of both primary and secondary metabolites under water stress conditions,thereby enhancing tolerance and reducing the detrimental impact of water stress on quinoa plants. 展开更多
关键词 COMPOST mycorrhizal consortium metabolites nutritional value phenolic compounds tetraterpenoids water stress quinoa seeds
在线阅读 下载PDF
Urban Soil Compaction Remediation by Shallow Tillage and Compost in Hydroseeded Lawn
19
作者 James Jihoon Kang Adam Flores +1 位作者 Engil Isadora Pujol Pereira Jungseok Ho 《Open Journal of Soil Science》 2024年第7期399-415,共17页
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm... Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites. 展开更多
关键词 COMPACTION COMPOST INFILTRATION Soil Organic Matter Soil Enzyme TILLAGE Wet Aggregate Stability
在线阅读 下载PDF
Agronomic Performances of Manure Composts in Simplified Soilless Tomato Cultivation
20
作者 Aké Hermann Thierry Biékré Seu Jonathan Gogbeu +4 位作者 Guy Joël Olivier Atsin Serge Hervé Kimou Koffi Aimé Yao Bi Tra Tie Denezon Odette Dogbo 《Journal of Agricultural Chemistry and Environment》 2024年第4期355-372,共18页
Composts are recognised as an important source of nutrients for crops. The study aims to valorise agricultural by-products by composts made from broiler (A), laying hen (B) and bovine (C) manures in soilless tomato cu... Composts are recognised as an important source of nutrients for crops. The study aims to valorise agricultural by-products by composts made from broiler (A), laying hen (B) and bovine (C) manures in soilless tomato cultivation. Treatments consisted of these three composts and controls consisting of coconut fibres fed with a nutrient solution. The system is a randomised Fisher block with three replications. Each elementary plot consisted of nine tomato plants. Chemical parameters of the substrates and agronomic parameters of the plants were recorded from 14 to 49 days after transplanting (DAT). The pH stabilised at around 6.2 after varying from 7.1 to 8.0 in the composts. The high electrical conductivity (5.9 - 6.01 dS/m) was less than 1 dS/m at 49 DAT. Agromorphological parameters were close to the controls. Fruit necrosis was higher in the compost-based substrates (13.75% - 32.22%) than in the controls (<2%). Healthy fruit yields from the composts (38.7 - 48.7 t/ha) were high, although lower than those from the controls (49.9 - 57.4 t/ha). Fruit harvested from these substrates had a longer average shelf life (38.23 days) than the controls (28.5 days). This study showed that composts have fertilising properties for soilless tomato cultivation, in particular that of laying hen manure (48.33 t/ha). These composts could provide an alternative to the use of chemical fertilisers in soilless tomato cultivation. 展开更多
关键词 Chemical Fertilizer Manure Compost Simplified Soilless Cultivation TOMATO
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部