期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
1
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
Micro-mechanical damage simulation of 2.5D woven variable thickness composites
2
作者 Nan WANG Haitao CUI +3 位作者 Hongjian ZHANG Yaoming FU Gangjin HUANG Shuangqi LYU 《Chinese Journal of Aeronautics》 2025年第7期168-184,共17页
With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach... With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach is proposed to rapidly construct full-scale meso-finite element models for Outer Reduction Yarn Woven Composites(ORYWC)and Inner Reduction Yarn Woven Composites(IRYWC).Then,six independent damage variables are identified:yarn fiber tension/compression,yarn matrix tension/compression,and resin matrix tension/compression.These variables are utilized to establish the constitutive equation of woven composites,considering the coupling effects of microscopic damage.Finally,combined with the Hashin failure criterion and von Mises failure criterion,the strength prediction model is implemented in ANSYS using APDL language to simulate the strength failure process of 2.5DWVTC.The results show that the predicted stiffness and strength values of various parts of ORYWC and IRYWC are in good agreement with the relevant test results. 展开更多
关键词 Constitutive equation 2.5D woven variable thickness composites Damage variables Finite element models Modeling approach Strength prediction model
原文传递
Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators 被引量:2
3
作者 TAO Ji-xiao YI Sheng-hui +1 位作者 DENG Ya-jie HE Xiao-qiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3757-3777,共21页
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu... Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches. 展开更多
关键词 active control finite element method linear quadratic regulator algorithm nonlinear flutter thermal postbuckling variable stiffness composite laminates
在线阅读 下载PDF
The Novel Variable Stiffness Composite Systems with Characteristics of Repeatable High Load Bearing and Response Rate
4
作者 Zhiwei Tuo Zhaohua Lin +4 位作者 Qian Zhao Yunhong Liang Han Wu Chang Liu ZhiWu Han 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期495-505,共11页
On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and re... On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and response rate restricted the application of variable stiffness composite.In this work,the novel variable stiffness composite system with characteristics of repeatable high load bearing and response rate was successfully prepared via the double-layer anisotropic structure to solve the bottlenecks of variable stiffness composites.The novel variable stiffness composite systems were composed of variable stiffness layer of polycaprolactone(PCL)and the driven layer of silicone elastomer with alcohol,which continuously changed Young’s modulus from 0.1 to 7.263 MPa(72.63 times variation)in 200 s and maintained maximum weight of 11.52 times its own weight(8.5 g).Attributed to the relatively high variable stiffness range and load bearing value of variable stiffness composite system,the repeatable response process led to the efficient high load driven as“muscle”and diversified precise grab of objects with different shapes as“gripper”,owning widespread application prospects in the field of bionics. 展开更多
关键词 Variable stiffness composite High strength Repeatable High load bearing BIONIC
在线阅读 下载PDF
Experimental and numerical studies on buckling and post-buckling behavior of T-stiffened variable stiffness panels
5
作者 Yan HUANG Yahui ZHANG +3 位作者 Bin KONG Jiefei GU Zhe WANG Puhui CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期459-470,共12页
Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness s... Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work. 展开更多
关键词 Variable stiffness composite BUCKLING POST-BUCKLING Finite element method Stiffened panels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部