Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach...With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach is proposed to rapidly construct full-scale meso-finite element models for Outer Reduction Yarn Woven Composites(ORYWC)and Inner Reduction Yarn Woven Composites(IRYWC).Then,six independent damage variables are identified:yarn fiber tension/compression,yarn matrix tension/compression,and resin matrix tension/compression.These variables are utilized to establish the constitutive equation of woven composites,considering the coupling effects of microscopic damage.Finally,combined with the Hashin failure criterion and von Mises failure criterion,the strength prediction model is implemented in ANSYS using APDL language to simulate the strength failure process of 2.5DWVTC.The results show that the predicted stiffness and strength values of various parts of ORYWC and IRYWC are in good agreement with the relevant test results.展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and re...On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and response rate restricted the application of variable stiffness composite.In this work,the novel variable stiffness composite system with characteristics of repeatable high load bearing and response rate was successfully prepared via the double-layer anisotropic structure to solve the bottlenecks of variable stiffness composites.The novel variable stiffness composite systems were composed of variable stiffness layer of polycaprolactone(PCL)and the driven layer of silicone elastomer with alcohol,which continuously changed Young’s modulus from 0.1 to 7.263 MPa(72.63 times variation)in 200 s and maintained maximum weight of 11.52 times its own weight(8.5 g).Attributed to the relatively high variable stiffness range and load bearing value of variable stiffness composite system,the repeatable response process led to the efficient high load driven as“muscle”and diversified precise grab of objects with different shapes as“gripper”,owning widespread application prospects in the field of bionics.展开更多
Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness s...Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work.展开更多
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by National Science and Technology Major Project,China(No.2017-IV-0007-0044)National Natural Science Foundation of China(No.52175142),National Natural Science Foundation of China(No.52305170)Natural Science Foundation of Sichuan Province,China(No.2022NSFSC1885)。
文摘With the application of 2.5D Woven Variable Thickness Composites(2.5DWVTC)in aviation and other fields,the issue of strength failure in this composite type has become a focal point.First,a three-step modeling approach is proposed to rapidly construct full-scale meso-finite element models for Outer Reduction Yarn Woven Composites(ORYWC)and Inner Reduction Yarn Woven Composites(IRYWC).Then,six independent damage variables are identified:yarn fiber tension/compression,yarn matrix tension/compression,and resin matrix tension/compression.These variables are utilized to establish the constitutive equation of woven composites,considering the coupling effects of microscopic damage.Finally,combined with the Hashin failure criterion and von Mises failure criterion,the strength prediction model is implemented in ANSYS using APDL language to simulate the strength failure process of 2.5DWVTC.The results show that the predicted stiffness and strength values of various parts of ORYWC and IRYWC are in good agreement with the relevant test results.
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
基金the project of the National Key Research and Development Program of China(2018YFA0703300)the National Natural Science Foundation of China(52105302,52175271,52021003,and 91848204)+1 种基金the team of Innovation and entrepreneurship of Jilin Province(20210509047RQ,20210508057RQ)the Program for JLU Science and Technology Innovative Research Team(2017TD-04).
文摘On the base of controllable variable stiffness property,variable stiffness composites were the main components of functional materials in aerospace.However,the relatively low mechanical strength,stiffness range,and response rate restricted the application of variable stiffness composite.In this work,the novel variable stiffness composite system with characteristics of repeatable high load bearing and response rate was successfully prepared via the double-layer anisotropic structure to solve the bottlenecks of variable stiffness composites.The novel variable stiffness composite systems were composed of variable stiffness layer of polycaprolactone(PCL)and the driven layer of silicone elastomer with alcohol,which continuously changed Young’s modulus from 0.1 to 7.263 MPa(72.63 times variation)in 200 s and maintained maximum weight of 11.52 times its own weight(8.5 g).Attributed to the relatively high variable stiffness range and load bearing value of variable stiffness composite system,the repeatable response process led to the efficient high load driven as“muscle”and diversified precise grab of objects with different shapes as“gripper”,owning widespread application prospects in the field of bionics.
基金Supported by the National Natural Science Foundation of China(No.11902124).
文摘Currently,experimental research on variable stiffness design mainly focuses on laminates.To ensure adaptability in practical application,it is imperative to conduct a systematic study on stiffened variable stiffness structures,including design,manufacture,experiment,and simulation.Based on the minimum curvature radius and process schemes,two types of T-stiffened panels were designed and manufactured.Uniaxial compression tests have been carried out and the results indicate that the buckling load of variable stiffness specimens is increased by 26.0%,while the failure load is decreased by 19.6%.The influence mechanism of variable stiffness design on the buckling and failure behavior of T-stiffened panels was explicated by numerical analysis.The primary reason for the reduced strength is the significantly increased load bearing ratio of stiffeners.As experimental investigations of stiffened variable stiffness structures are very rare,this study can be considered a reference for future work.