As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai...As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.展开更多
The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of c...The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.展开更多
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho...Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty.展开更多
The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the stre...The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill.展开更多
Detection and repair of composite damage is crucial to ensure the safety and reliability of aircraft structures.A novel approach to quantitatively evaluate the repair tolerance of composite structures in civil aircraf...Detection and repair of composite damage is crucial to ensure the safety and reliability of aircraft structures.A novel approach to quantitatively evaluate the repair tolerance of composite structures in civil aircraft based on Bayesian updating is presented.The method incorporates historical damage inspection data to determine the prior distribution of damage size,which is then updated with newly collected damage size data using Bayesian theory.Monte Carlo simulation is employed to investigate the probability of failure and estimate maintenance costs,considering various factors such as the frequency and timing of damage events,damage detection,structural strength,gust loads,and maintenance expenses throughout the lifecycle of composite structures.Safety and economic factors are considered to establish a lower threshold for repairs and an upper threshold for maintenance based on the occurrence of accidental impact damage.Verification of the effectiveness and feasibility of a quantitative assessment method for repair tolerance is conducted using damage statistics data from civil aircraft routes utilizing the structural skin panels of composite outer wing.The results demonstrate that the method proposed in conjunction with extensive simulations and full utilization of field damage inspection data can effectively simulate unexpected impact damage situations that may occur during civil aircraft service and evaluate the reliability and economic feasibility of the repair of structure.The research findings hold significant theoretical and practical value for the preparation of documents for continued airworthiness of composite structures,including structural repair manuals and maintenance programs.展开更多
Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable...Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.展开更多
The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. ...The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. Numerical examples for the reliability design optimization (RDO) of a laminate and a composite cylindrical shell are worked out to demonstrate the effectiveness of the method. Then a design for composite pressure vessels is studied. The advantages and necessity of RDO over the conventional equi-strength design are addressed. Examples show that the proposed method has good stability and is efficient in dealing with the probabilistic optimal design of composite structures. It may serve as an effective tool to optimize other complicated structures with uncertainties.展开更多
Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures...Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of damage, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.展开更多
This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this a...This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this area.The review begins with the application of composite materials in the aircraft structures and highlights their particular areas of application and limitations.An overview of directed energy system is given.Some of the commonly used systems in this category are discussed and the working principles of laser energy systems are described.The experimental and numerical studies reported regarding the aircraft composite structures subject to the effect of directed energy systems,especially the laser systems are reviewed in detail.In particularly,the general effects of laser systems and the relevant damage mechanisms against the composite structures are reported.The review draws attention to the recent research and findings in this field and is expected to guide engineers/researchers in future theoretical,numerical,and experimental studies.展开更多
Structural Health Monitoring(SHM)is the process of collecting,interpreting and analysing data from structures in order to determine its health status and the remaining life span.Composite materials have been extensive...Structural Health Monitoring(SHM)is the process of collecting,interpreting and analysing data from structures in order to determine its health status and the remaining life span.Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties.However,composite materials are prone to develop damage when subjected to low to medium impacts(i.e.1-10 m/s and 11-30 m/s respectively).Hence,the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance.Despite the availability of several SHM methods for the damage identification in composite structures,no single technique has proven suitable for all circumstances.It must be noted that the amount of techniques available nowadays is too extensive to be comprehensively reviewed in a single paper.Therefore,the focus will be on techniques that can serve as a starting point for studies focusing on damage detection,localisation,assessment and prognosis on certain kinds of structures.Thus,the line of thought behind the search and the structure of this review is a result of objectives beyond the scope of the paper itself.Nevertheless,it was considered that,once the above was understood,an updated synopsis such as this could also be useful for other researchers in the same field.展开更多
The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions o...The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions of the linear components, three kinds of dynamic equations of interfacial integration are proposed and a procedure to transform the dynamic equations of integral type into a set of ordinary differential equations is suggested. Computer simulations and a real test are given to verify the effectiveness of the theoretical results.展开更多
In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary el...In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.展开更多
In this paper, the fuzzy theory is used to describe the uncertainty in failure definition of composite structures. The concept of structural failure level (SFL) is suggested and a method of evaluation is presented.
This article investigates the potential impact of manufacturing uncertainty in composite structures here in the form of thickness variation in laminate plies, on the robustness of commonly used Artificial Neural Netwo...This article investigates the potential impact of manufacturing uncertainty in composite structures here in the form of thickness variation in laminate plies, on the robustness of commonly used Artificial Neural Networks (ANN) in Structural Health Monitoring (SHM). Namely, the robustness of an ANN SHM system is assessed through an airfoil case study based on the sensitivity of delamination location and size predictions, when the ANN is imposed to noisy input. In light of the observed poor performance of the original network, even when its architecture was carefully optimized, it had been proposed to weigh the input layer of the ANN by a set of signal-to-noise (SN) ratios and then trained the network. Both damage location and size predictions of the latter SHM approach were increased to above 90%. Practical aspects of the proposed robust SN-ANN SHM have also been discussed.展开更多
The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,t...The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures.展开更多
The optimization of anode materials such as Sn,P and Sn4P3 in terms of capacity and cyclability is crucial to improve the overall performance of sodium-ion batteries.However,the delicate fabrication of these materials...The optimization of anode materials such as Sn,P and Sn4P3 in terms of capacity and cyclability is crucial to improve the overall performance of sodium-ion batteries.However,the delicate fabrication of these materials,including the balanced crystalline/amorphous domains,reasonable particle size and distribution,complementary components exhibiting synergetic reactions,among others,still greatly retards the realization of maximum performance.Herein,a series of Sn/P-based composite materials with a plum pudding configuration were fabricated to achieve controlled crystalline/amorphous structures as well as optimized size and distribution in a carbon framework.By using a facile and low-cost ball milling method,the structural transformation of Sn4P3 into phase-separated crystalline Sn and amorphous P in a carbonaceous framework can be finely controlled,producing a series of binary(Sn4 P3/C),quaternary(Sn4P3/Sn/P/C) and ternary(Sn/P/C) composites.Due to the complementary components,crystalline/amorphous adjustment,crystallite sizes and well-integrated interfaces,the quaternary Sn4P3/Sn/P/C composite showed the best electrochemical performance,with a noticeable long-cycle performance of 382 mA hg-1 and 86% capacity retention for nearly 300 cycles.Different from binary and ternary composites,the discharge of quaternary composite generates no noticeable signals of Na15Sn4 and Na3 P in the ex-situ X-ray diffraction patterns,suggesting the crystallite growth of sodiation products can be depressed.Moreover,Sn4 P3 in the quaternary composite can be partially regenerated in the desodiation reaction,implying the significant short-range interaction and thus better synergetic reactions between Sn and P components.The results demonstrate that the design and organization of crystalline/amorphous structures can serve as an efficient strategy to develop novel electrode materials for sodium ion batteries.展开更多
The optimization of inspection intervals for composite structures has been proposed,but only one damage type,dent damage,has been addressed so far.The present study focuses on the two main damage types of dent and del...The optimization of inspection intervals for composite structures has been proposed,but only one damage type,dent damage,has been addressed so far.The present study focuses on the two main damage types of dent and delamination,and a model for optimizing the inspection interval of composite structures is proposed to minimize the total maintenance cost on the premise that the probability of structure failure will not exceed the acceptable level.In order to analyze the damage characteristics and the residual strength of the composite structure,the frequency,energy,size,and depth of the damage are studied,and the situation of missing detection during the inspection is considered.The structural residual strength and total maintenance cost are quantified corresponding to different inspection intervals.The proposed optimization method relieves the constraints in previous simulation methods,and is more consistent with the actual situation.Finally,the outer wing of aircraft is taken as an example,and with the historical cases and experimental data,the optimization method is verified.The optimal inspection interval is shorter than the actually implemented inspection interval,and the corresponding maintenance cost is reduced by 23.3%.The result shows the feasibility and effectiveness of the proposed optimization method.展开更多
Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoel...Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range.展开更多
In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure...In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified.展开更多
The composite structure with the dielectric elastomer and soft materials is the main form of theactuators in soft robots. However, the theoretical model is hard to obtain due to the nonlinear large deformationof mater...The composite structure with the dielectric elastomer and soft materials is the main form of theactuators in soft robots. However, the theoretical model is hard to obtain due to the nonlinear large deformationof materials. In this paper, a new composite element model is established based on the absolute nodal coordinateformulation. The consistent deformation conditions at the contact interface between two thin plates are deduced.The hyperelastic constitutive model and the dielectric elastomer constitutive model are introduced for the twothin plates. Then the dynamic model is established to study the dynamic behaviors of the composite flexiblestructure with various parameters. The results show that the nonlinear deformation appears obviously whenthe flexible composite plate structure is driven by various voltages, and the warping deformation becomes moreobvious with the increase of the voltage. The width and thickness of the driven thin plate influence the stabilityof the whole structure. With the decrease of the width or thickness, the deformation of the structure is moreconsistent with obvious periodicity, and the control performance is improved. Finally, the structural parametersof the composite structures are optimized to improve the control performance based on the dynamic performance.Additionally, smaller width and thickness parameters are preferred to obtain better performance in the design offlexible actuator of soft robot.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62101020 and 62141405)the Special Scientific Research Project of Civil Aircraft,China(No.MJZ5-2N22).
文摘As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.
文摘The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.
基金funded by the National Natural Science Foundation of China(Grant No.52276047)the Open Fund of NationalKey Laboratory of SpacecraftThermal Control(Grant No.NKLST-JJ-202401011)the Beijing Municipal Science&Technology Commission(Grant No.Z231100006123010).
文摘Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty.
基金Project(52308316)supported by the National Natural Science Foundation of China,Project(BBJ2024088)supported by the Fundamental Research Funds for the Central Universities(PhD.Top Innovative Talents Fund of CUMTB),China。
文摘The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill.
基金the financial support provided by the Natural Science Foundation of Jiangsu Province,China(Nos.BK20220687 and BK20201470)the National Natural Science Foundation of China(Nos.U1933202 and 12372079)The support provided by China Scholarship Council(No.201606830028)during the visit of Xin LI at the University of Toronto is also acknowledged and appreciated.
文摘Detection and repair of composite damage is crucial to ensure the safety and reliability of aircraft structures.A novel approach to quantitatively evaluate the repair tolerance of composite structures in civil aircraft based on Bayesian updating is presented.The method incorporates historical damage inspection data to determine the prior distribution of damage size,which is then updated with newly collected damage size data using Bayesian theory.Monte Carlo simulation is employed to investigate the probability of failure and estimate maintenance costs,considering various factors such as the frequency and timing of damage events,damage detection,structural strength,gust loads,and maintenance expenses throughout the lifecycle of composite structures.Safety and economic factors are considered to establish a lower threshold for repairs and an upper threshold for maintenance based on the occurrence of accidental impact damage.Verification of the effectiveness and feasibility of a quantitative assessment method for repair tolerance is conducted using damage statistics data from civil aircraft routes utilizing the structural skin panels of composite outer wing.The results demonstrate that the method proposed in conjunction with extensive simulations and full utilization of field damage inspection data can effectively simulate unexpected impact damage situations that may occur during civil aircraft service and evaluate the reliability and economic feasibility of the repair of structure.The research findings hold significant theoretical and practical value for the preparation of documents for continued airworthiness of composite structures,including structural repair manuals and maintenance programs.
基金the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this researchsupported by EPSRC grant EP/R002495/1the European Metrology Research Programme through grant 17IND08。
文摘Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.
基金supported by National Natural Science Foundation of China (No. 10772070)National Basic Research Program of China (No. 2011CB013800)
文摘The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. Numerical examples for the reliability design optimization (RDO) of a laminate and a composite cylindrical shell are worked out to demonstrate the effectiveness of the method. Then a design for composite pressure vessels is studied. The advantages and necessity of RDO over the conventional equi-strength design are addressed. Examples show that the proposed method has good stability and is efficient in dealing with the probabilistic optimal design of composite structures. It may serve as an effective tool to optimize other complicated structures with uncertainties.
基金National Natural Science Foundation of China (50830201,10872217)Aeronautical Science Foundation of China (20090952015)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20103218110005)National Science Foundation of the General Program of Jiangsu Higher Education Institutions (09KJD520005)
文摘Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of damage, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.
文摘This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this area.The review begins with the application of composite materials in the aircraft structures and highlights their particular areas of application and limitations.An overview of directed energy system is given.Some of the commonly used systems in this category are discussed and the working principles of laser energy systems are described.The experimental and numerical studies reported regarding the aircraft composite structures subject to the effect of directed energy systems,especially the laser systems are reviewed in detail.In particularly,the general effects of laser systems and the relevant damage mechanisms against the composite structures are reported.The review draws attention to the recent research and findings in this field and is expected to guide engineers/researchers in future theoretical,numerical,and experimental studies.
文摘Structural Health Monitoring(SHM)is the process of collecting,interpreting and analysing data from structures in order to determine its health status and the remaining life span.Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties.However,composite materials are prone to develop damage when subjected to low to medium impacts(i.e.1-10 m/s and 11-30 m/s respectively).Hence,the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance.Despite the availability of several SHM methods for the damage identification in composite structures,no single technique has proven suitable for all circumstances.It must be noted that the amount of techniques available nowadays is too extensive to be comprehensively reviewed in a single paper.Therefore,the focus will be on techniques that can serve as a starting point for studies focusing on damage detection,localisation,assessment and prognosis on certain kinds of structures.Thus,the line of thought behind the search and the structure of this review is a result of objectives beyond the scope of the paper itself.Nevertheless,it was considered that,once the above was understood,an updated synopsis such as this could also be useful for other researchers in the same field.
文摘The paper deals with the dynamic response prediction of the composite structure,which consists of two linear components coupled by some nonlinear vibration isolators. Based on the measured impulse response functions of the linear components, three kinds of dynamic equations of interfacial integration are proposed and a procedure to transform the dynamic equations of integral type into a set of ordinary differential equations is suggested. Computer simulations and a real test are given to verify the effectiveness of the theoretical results.
文摘In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.
文摘In this paper, the fuzzy theory is used to describe the uncertainty in failure definition of composite structures. The concept of structural failure level (SFL) is suggested and a method of evaluation is presented.
文摘This article investigates the potential impact of manufacturing uncertainty in composite structures here in the form of thickness variation in laminate plies, on the robustness of commonly used Artificial Neural Networks (ANN) in Structural Health Monitoring (SHM). Namely, the robustness of an ANN SHM system is assessed through an airfoil case study based on the sensitivity of delamination location and size predictions, when the ANN is imposed to noisy input. In light of the observed poor performance of the original network, even when its architecture was carefully optimized, it had been proposed to weigh the input layer of the ANN by a set of signal-to-noise (SN) ratios and then trained the network. Both damage location and size predictions of the latter SHM approach were increased to above 90%. Practical aspects of the proposed robust SN-ANN SHM have also been discussed.
基金the Science Challenge Project(Grant No.TZ2018002)the National Natural Science Foundation of China(Grant Nos.11972205 and 11722218)+1 种基金the National Key Research Development Program of China(Grant No.2017YFB0702003)Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province.
文摘The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering,such as the shell/liner system of the helmet.However,there is still lacking a reliable experi-mental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target,which limits the development of protection structures.In this paper,we proposed a new method to evaluate experi-mentally and numerically the blast mitigation performance of hard/soft composite structures.The blast mitigation mechanism is analyzed.The hard/soft structures were composed of ultra-high molecular weight polyethylene(UHMWPE)composite and expanded polyethylene(EPE)foam.In field explosion experiment,a 7.0 kg trinitrotoluene(TNT)spherical charge is used to generate blast waves at a 3.8 m stand-off distance.A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure.Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse,through making the pulse profile flatter,reducing the pressure amplitude,and delaying the pulse arrival time.Specifically,the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%.Correspondingly,the finite element simulation is also carried out to understand the blast mitigation mechanism.The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface,which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy.Furthermore,based on these analyses,the corresponding theoretical model is proposed,and it can well explain the experimental and numerical results.This study is meaningful for evaluating and designing high-performance blast mitigation structures.
基金This project is supported financially by the National Natural Science Foundation of China(Grants 51622202,21603009 and21875007)the National Key R&D Program of China(Grant No.2018YFB0104302)+1 种基金the Beijing Natural Science Foundation(B)(KZ201910005002)the Guangdong Provincial Science and Technology Program(2016B010114001)。
文摘The optimization of anode materials such as Sn,P and Sn4P3 in terms of capacity and cyclability is crucial to improve the overall performance of sodium-ion batteries.However,the delicate fabrication of these materials,including the balanced crystalline/amorphous domains,reasonable particle size and distribution,complementary components exhibiting synergetic reactions,among others,still greatly retards the realization of maximum performance.Herein,a series of Sn/P-based composite materials with a plum pudding configuration were fabricated to achieve controlled crystalline/amorphous structures as well as optimized size and distribution in a carbon framework.By using a facile and low-cost ball milling method,the structural transformation of Sn4P3 into phase-separated crystalline Sn and amorphous P in a carbonaceous framework can be finely controlled,producing a series of binary(Sn4 P3/C),quaternary(Sn4P3/Sn/P/C) and ternary(Sn/P/C) composites.Due to the complementary components,crystalline/amorphous adjustment,crystallite sizes and well-integrated interfaces,the quaternary Sn4P3/Sn/P/C composite showed the best electrochemical performance,with a noticeable long-cycle performance of 382 mA hg-1 and 86% capacity retention for nearly 300 cycles.Different from binary and ternary composites,the discharge of quaternary composite generates no noticeable signals of Na15Sn4 and Na3 P in the ex-situ X-ray diffraction patterns,suggesting the crystallite growth of sodiation products can be depressed.Moreover,Sn4 P3 in the quaternary composite can be partially regenerated in the desodiation reaction,implying the significant short-range interaction and thus better synergetic reactions between Sn and P components.The results demonstrate that the design and organization of crystalline/amorphous structures can serve as an efficient strategy to develop novel electrode materials for sodium ion batteries.
基金supported by the National Natural Science Foundation of China(U1533202)the Fundamental Research Funds for the Central Universities(NP2019408)。
文摘The optimization of inspection intervals for composite structures has been proposed,but only one damage type,dent damage,has been addressed so far.The present study focuses on the two main damage types of dent and delamination,and a model for optimizing the inspection interval of composite structures is proposed to minimize the total maintenance cost on the premise that the probability of structure failure will not exceed the acceptable level.In order to analyze the damage characteristics and the residual strength of the composite structure,the frequency,energy,size,and depth of the damage are studied,and the situation of missing detection during the inspection is considered.The structural residual strength and total maintenance cost are quantified corresponding to different inspection intervals.The proposed optimization method relieves the constraints in previous simulation methods,and is more consistent with the actual situation.Finally,the outer wing of aircraft is taken as an example,and with the historical cases and experimental data,the optimization method is verified.The optimal inspection interval is shorter than the actually implemented inspection interval,and the corresponding maintenance cost is reduced by 23.3%.The result shows the feasibility and effectiveness of the proposed optimization method.
基金Research Grants Council of the Hong Kong Special Administrative Region,China Under Grant No.PolyU 5252/07EThe Hong Kong Polytechnic University through the Development of Niche Areas Programme Under Grant No.1-BB95Zhejiang Provincial Natural Science Foundation of China Under Grant No.Y607087)
文摘Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range.
基金This research work was supported by the National Natural Science Foundation of China(Grant No.51975227)the Natural Science Foundation for Distinguished Young Scholars of Hubei Province,China(Grant No.2017CFA044).
文摘In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified.
基金the National Natural Science Foundation of China(No.51775345)。
文摘The composite structure with the dielectric elastomer and soft materials is the main form of theactuators in soft robots. However, the theoretical model is hard to obtain due to the nonlinear large deformationof materials. In this paper, a new composite element model is established based on the absolute nodal coordinateformulation. The consistent deformation conditions at the contact interface between two thin plates are deduced.The hyperelastic constitutive model and the dielectric elastomer constitutive model are introduced for the twothin plates. Then the dynamic model is established to study the dynamic behaviors of the composite flexiblestructure with various parameters. The results show that the nonlinear deformation appears obviously whenthe flexible composite plate structure is driven by various voltages, and the warping deformation becomes moreobvious with the increase of the voltage. The width and thickness of the driven thin plate influence the stabilityof the whole structure. With the decrease of the width or thickness, the deformation of the structure is moreconsistent with obvious periodicity, and the control performance is improved. Finally, the structural parametersof the composite structures are optimized to improve the control performance based on the dynamic performance.Additionally, smaller width and thickness parameters are preferred to obtain better performance in the design offlexible actuator of soft robot.