Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer fro...Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries.展开更多
A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal en...A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal energy storage, while diatomite acted as the carrier matrix to provide the structural strength and prevent the leakage of PCM. It was found that KNO3 could be retained 65 wt% into pores and on surfaces of diatomite without the leakage of melted KNO3 from the SS-CPCM. The calculated filling rate of molten KNO3 that could enter into the disc-like shape pore of diatomite verified the scanning elec- tronic microscopy images of SS-CPCM. X-ray diffraction and Fourier transform infrared spectroscopy results showed that no reaction occurred between KNO3 and diatomite, performing good compatibility. Accord- ing to the differential scanning calorimetry results, after 50 thermal cycles, the phase change temperatures for melting and freezing of SS-CPCM with 65 wt% KNO3 were changed from 330.23 ℃ and 332.90 ℃ to 330.11 ℃ and 332.84 ℃ and corresponding latent heats varied from 60.52 J/g and 47.30 J/g to 54.64 J/g and 41.25 J/g, respectively. The KNO3/diatomite SS-CPCM may be considered as a potential storage media in solar power plants for thermal energy storage.展开更多
Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w...Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design.展开更多
A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emissio...A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.展开更多
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ...This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material.展开更多
Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal con...Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields.展开更多
Solid-state quantum emitters,such as semiconductor quantum dots(QDs),have numerous significant applications in quantum information science.While there has been some success in controlling structured light from kinds o...Solid-state quantum emitters,such as semiconductor quantum dots(QDs),have numerous significant applications in quantum information science.While there has been some success in controlling structured light from kinds of single-photon sources,the simultaneous on-demand,high-quality,and integrated generation of singlephoton sources with various degrees of freedom remains a challenge.Here,we utilize composite phase-based metasurfaces,comprising transmission phase and geometric phase elements,to modulate the semiconductor QD emission through a simplified fabrication process.This approach enables to decouple the emission into left and right circularly polarized(LCP/RCP)beams in arbitrary directions(e.g.,with zenith angles of 10°and 30°),producing collimated beams with divergence angles less than 6.0°and carrying orbital angular momentum(OAM)modes with different topological charges.Furthermore,we examine the polarization relationship between the output beams and QD emission to validate the performance of our designed devices.Additionally,we achieve eight channels of single-photon emissions,each with well-defined states of spin angular momentum(SAM),OAM,and specific emission directions.Our work not only demonstrates an effective integrated quantum device for the on-demand manipulation of precise direction,collimation,SAM,and various OAM modes,but also significantly advances research efforts in the quantum field related to the generation of multi-OAM single photons.展开更多
Flexible phase change materials(PCMs)have become increasingly critical to address the demand for thermal management in electronic technologies and energy conversion.However,their application remains challenging becaus...Flexible phase change materials(PCMs)have become increasingly critical to address the demand for thermal management in electronic technologies and energy conversion.However,their application remains challenging because of their rigidity,liquid leakage,and insufficient thermal conductivity.Herein,flexible glutamic acid@natural rubber/paraffin wax(PW)/carbon nanotubes-graphene nanoplatelets(GNR/PW/CGNP)phase change composites with high thermal conductivity,excellent shape stability,and recyclability were reported.Zn^(2+)-based dynamic crosslinking was constructed through the reaction of zinc acetate and carboxyl groups on glutamic acid@natural rubber(GNR),which was used as a flexible matrix to physically blend with paraffin wax/carbon nanotubes/graphene nanoplatelets(PW/CGNP)to achieve uniform dispersion of PW/CGNP,continuous thermal conductivity networks,and good encapsulation of PW.The GNR/PW/CGNP composites showed excellent mechanical strength,flexibility,and recycling ability,and effective encapsulation prevented the outflow of melted PW during the phase transition.Also,the phase change enthalpy could attain 111.1 J/g with a higher thermal conductivity of 1.055 W/m K,428%higher than that of pure PW owing to the formation of efficient thermal conductive pathways,which exhibited outstanding thermal management performance and superior temperature control behavior in electronic devices.The developed flexible composite PCMs may open new possibilities for next-generation flexible thermal management electronics.展开更多
Cold sintering as a new technology for the fabrication of ceramic composites could overcome the shortcomings of traditional high temperature sintering approach and achieve dense structure in the composite at a relativ...Cold sintering as a new technology for the fabrication of ceramic composites could overcome the shortcomings of traditional high temperature sintering approach and achieve dense structure in the composite at a relatively low temperature(<200℃).In this work,a shape stabilization phase change composite is fabricated and investigated by dint of such new fabrication approach,in which a mixed nitrate salt of NaNO_(3)-KNO_(3) is used as phase change material and magnesia powder is acted as structure skeleton.Using of deionized water as sintering additive,the effects of sintering agent content,sintering temperature,uniaxial pressure and time on the composite microstructure characteristics and macroscopic properties are evaluated.The results show that the liquid salt could be effectively accommodated in the magnesia skeleton,forming a dense and stable structure in the composite.There is existence of optimal cold sintering parameters at which a benign combination of mechanical strength and thermal cycling performance could be attained in the composite.Under the sintering temperature of150℃,duration time of 8 min,uniaxial pressure of 150 MPa,and water mass content of 7%,the fabricated composite exhibits a heat storage density of 610 kJ/kg at its potential utilization temperature range of30℃-580℃ and a compressive strength over 240 MPa with a dense density higher than 98%,demonstrating that it can be a viable alternative used in thermal energy storage domains.展开更多
Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change ma...Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems.展开更多
Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive perform...Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive performance of materials,but the processing difficulty,especially in ceramics forming,limits the control and innovation of material architecture.Here,combined with 3D printing and squeeze infiltration technology,two precisely controllable architectures of AZ91/Al_(2)O_(3)interpenetrating phase composites(IPC)with ceramic scaffold were prepared.The interface,properties and impact of different architecture on IPC performance were studied by experiments and finite element simulation.The metallurgical bonding of the interface was realized with the formation of MgAl_(2)O_(4)reaction layer.The IPC with 1 mm circular hole scaffold(1C-IPC)exhibited significantly improved elastic modulus of 164 GPa,high compressive strength of 680 MPa,and good CTE of 12.91×10^(-6)K^(−1),which were 3.64 times,1.98 times and 55%of the Mg matrix,respectively.Their elastic modulus,compressive strength,and CTE were superior to the vast majority of Mg alloys and Mg based composites.The reinforcement and matrix were bicontinuous and interpenetrating each other,which played a critical role in ensuring the potent strengthening effect of the Al_(2)O_(3)reinforcement by efficient load transfer.Under the same volume fraction of reinforcements,compared to IPC with 1 mm hexagonal hole scaffold(1H-IPC),the elastic modulus and compressive strength of 1C-IPC increased by 15%and 28%,respectively,which was due to the reduced stress concentration and more uniform stress distribution of 1C-IPC.It shows great potential of architecture design in improving the performance of composites.This study provides architectural design strategy and feasible preparation method for the development of high performance materials.展开更多
Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal...Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal energy storage(LTES)systems is hampered due to its high supercooling and low thermal conductivity.In this work,modified A-alum(M-PCM)containing different nucleating agents was prepared and further adsorbed in expanded graphite(EG)to obtain composite phase change material(CPCM)to overcome the disadvantages of A-alum.Thermal properties,thermal cycle stability,microstructure and chemical compatibility of CPCM were characterized by differential scanning calorimetry,thermal constant analysis,scanning electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy.The cold rewarming phenomenon of CPCM was established and explained.Results showed that the latent heat and melting point of CPCM were 187.22 J/g and 91.54℃,respectively.The supercooling of CPCM decreased by 9.61℃,and thermal conductivity increased by 27 times compared with pure A-alum.Heat storage and release tests indicated that 2 wt%calcium chloride dihydrate(CCD,CaCl_(2)·2H_(2)O)was the optimum nucleating agent for A-alum.The result of TG and 30 thermal cycles revealed that CPCM exhibited favorable thermal stability and reliability during the operating temperature.The prepared modified A-alum/EG CPCM has a promising application prospect for LTES.展开更多
In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The ...In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability.The thermal performance of CPCM is significantly improved.The efficiency of temperature control can be obviously improved by adding metal foam in phase change material.CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin.An approximate plateau appears.The plateau can be considered as the temperature control zone of CPCM.Heat can be transferred fiom hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability.Natural convection promotes the melting of solid-liquid phase change material.Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material.The interior temperature difference decreases and the whole temperature becomes more uniform.For the same porosity with a metal foam,melting time of solid-liquid phase change material decreases.Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller.The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces.The research results can be used to guide fabricating the CPCM.展开更多
Lithium-ion batteries(LIBs)are progressing towards higher energy densities,extended lifespans,and improved safety.However,battery thermal management systems are facing increased demand owing to high-rate charging and ...Lithium-ion batteries(LIBs)are progressing towards higher energy densities,extended lifespans,and improved safety.However,battery thermal management systems are facing increased demand owing to high-rate charging and discharging,dynamic operating conditions,and heightened thermal safety concerns.Therefore,this paper proposes a novel composite phase change material(CPCM)comprising Na2SO4–10H2O as the core phase change material(PCM)and expanded graphite as the thermal conductivity enhancer.The CPCM offers high latent heat,superior thermal conductivity,and a two-stage temperature control function for battery thermal management and safety.The optimal mass CPCM ratio,determined through comprehensive characterization and thermal property tests,resulted in a melting point of 29.05℃,latent heat of 183.7 J·g^(-1),and high thermal conductivity of 3.926 W·m^(-1)·K^(-1).During normal LIB operations,the CPCM efficiently absorbs and transfers heat,reducing the peak LIB temperature from 66 to 34℃at 15℃ambient temperature during a 3.7C high-rate discharge.Under dynamic conditions,the peak temperatures across the three cycles were consistently controlled at 36.7,36.4,and 35.8℃,respectively.In a thermal runaway state,the thermochemical heat storage of hydrated salt dehydration effectively slowed LIB temperature increase,delaying the time to reach 130℃by 187 s.Suppression of the temperature rise outside the CPCM,combined with an extended dehydration plateau of up to 320 s,prevented the occurrence and propagation of thermal runaway in the battery.展开更多
Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in ...Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs.展开更多
The development of functional composites with excellent thermal management capabilities and electro-magnetic interference(EMI)shielding has become extremely urgent for keeping up with the continuous improvement of the...The development of functional composites with excellent thermal management capabilities and electro-magnetic interference(EMI)shielding has become extremely urgent for keeping up with the continuous improvement of the operating speed and efficiency for electronic equipment.In this study,the biolog-ical wood-derived porous carbon(WPC)was determined as the supporting material to encapsulating polyethylene glycol(PEG),and a series of WPC/PEG/Fe_(3)O_(4) phase change composites(PCCs)with excel-lent shape stability,EMI shielding and thermal management capabilities were prepared via a simple vac-uum impregnation method.The Fe_(3)O_(4) magnetic particles modified PCCs have greatly improved the EMI shielding effectiveness(SE).The EMI SE of WP-4(7.5 wt.% Fe_(3)O_(4) in PEG)can be up to 55.08 dB between 8.2−12.4 GHz,however,the WP-0 without Fe_(3)O_(4) addition is only 40.08 dB.Meanwhile,the absorption ratio of electromagnetic waves(EMW)has also increased from 75.02%(WP-0)to 85.56%(WP-4),which effectively prevents secondary pollution.In addition,after wrapping a thin layer of polydimethylsiloxane resin(PDMS),the obtained WP-4 can maintain a high heat storage capacity(109.52 J/g)and good wa-ter stability.In short,the prepared WPC/PEG/Fe_(3)O_(4) PCCs have great potential application value in the thermal management and electromagnetic shielding requirements for electronic devices.展开更多
Nanostructure of magnetically hard and soft materials is fascinating for exploring next-generation ul-trastrong permanent magnets with less expensive rare-earth elements.However,the resulting hard/soft nanocomposites ...Nanostructure of magnetically hard and soft materials is fascinating for exploring next-generation ul-trastrong permanent magnets with less expensive rare-earth elements.However,the resulting hard/soft nanocomposites often exhibit a low remanence/energy product due to the challenge in obtaining ideal phase components and appropriate soft phase fraction.In this work,a novel microstructure of multiple phases consisting of 1:5 phase and 1:3 phase as main hard phase,and a high ratio of Fe(Co)(27 wt.%-48 wt.%)as soft phase was obtained in Sm-Co(Fe)/Fe nanocomposite magnet.The grain size of both hard and soft phases below 15 nm was observed.The optimal energy product for Sm-Co(Fe)/Fe(Co)nanocom-posite is 2.1 times(an increment of 107%)of the corresponding single-hard-phase powders without soft phase.It reports that the isotropic nanocomposite powders exhibit a record of magnetic energy product larger than 25 MGOe(the highest value is 28.6 MGOe).The high performance and the microstructure achieved in this work for the isotropic powders will shed light on and provide a good premise for syn-thesizing high performance anisotropic bulk nanocomposite magnets.展开更多
Typical O'-sialon-based ceramics, with a formula of Si2-xAlxOl+xN2-x, where x was set as 0.25, were fabricated by in-situ synthesis Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were ad...Typical O'-sialon-based ceramics, with a formula of Si2-xAlxOl+xN2-x, where x was set as 0.25, were fabricated by in-situ synthesis Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25-0.30 MPa, and their rnicrostructure, phase content, and thermal conductivity were evaluated. The effects of O'-sialon and β-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O'-sialon-based ceramics decreased with the ratio of O'-sialon/β-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O'-sialon ceramics sintered at 1360℃ was 1.197 W.m-1.K-1.展开更多
Al2 O3-Si-Al composite specimens with the size of 25 mm × 25 mm × 125 mm were prepared using fused alumina (as aggregates and fines),ultra-fine α-Al2O3,Si and Al powders as starting materials,liquid pheno...Al2 O3-Si-Al composite specimens with the size of 25 mm × 25 mm × 125 mm were prepared using fused alumina (as aggregates and fines),ultra-fine α-Al2O3,Si and Al powders as starting materials,liquid phenol formaldehyde resin as the binder,pressing and heating at 800-1 500 ℃ for 3 h under carbon embedded condition.Evolution of phase composition and microstructure of Al2 O3-Si-Al composite during heating from 800 to 1 500 ℃ under carbon embedded condition were studied.The results show that:(1) Al4 C3,AlN and SiC are initially formed at 800-900 ℃ due to reactions of Al and Si with C or CO and N2 ; (2) at 1 000-1 300 ℃,the amounts of Al4C3,AlN and SiC increase with temperature rising and their crystals grow; (3) at 1 400-1 500 ℃,Al4 C3 and AlN disappear,and minor SiAlON crystals are observed; the nonoxide crystals develop well and they are interlaced in the corundum skeleton structure,which creates strengthening and toughening展开更多
This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite(Mg/HA) composites. Material extrusion ad...This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite(Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric,and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3806501)the National Natural Science Foundation of China(22178050,22108026)+3 种基金the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Natural Science Foundation of Liaoning Province(2022-BS-091)the Dalian Science and Technology Innovation Fund Young Tech Star(2022RQ008)the Fundamental Research Funds for the Central Universities(DUT22LAB610).
文摘Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries.
基金supported by the Program for New Century Excellent Talents in University (Grant No. NCET-08-828)the Program for the China Geological Survey (No. 1212011120323)the Fundamental Research Funds for the Central Universities (No. 2011YXL003)
文摘A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal energy storage, while diatomite acted as the carrier matrix to provide the structural strength and prevent the leakage of PCM. It was found that KNO3 could be retained 65 wt% into pores and on surfaces of diatomite without the leakage of melted KNO3 from the SS-CPCM. The calculated filling rate of molten KNO3 that could enter into the disc-like shape pore of diatomite verified the scanning elec- tronic microscopy images of SS-CPCM. X-ray diffraction and Fourier transform infrared spectroscopy results showed that no reaction occurred between KNO3 and diatomite, performing good compatibility. Accord- ing to the differential scanning calorimetry results, after 50 thermal cycles, the phase change temperatures for melting and freezing of SS-CPCM with 65 wt% KNO3 were changed from 330.23 ℃ and 332.90 ℃ to 330.11 ℃ and 332.84 ℃ and corresponding latent heats varied from 60.52 J/g and 47.30 J/g to 54.64 J/g and 41.25 J/g, respectively. The KNO3/diatomite SS-CPCM may be considered as a potential storage media in solar power plants for thermal energy storage.
基金This research was funded by the National Natural Science Foundation of China(51879166)the Open Fund of the State Key Laboratory of Frozen Soil Engineering of China(SKLFSE201909).
文摘Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design.
基金Funded by Science and Technology Support Program of Hubei Province of China(No.2015BAA111)
文摘A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.
基金Funded by the National Natural Science Foundation of China(No.51308275)Natural Science Foundation of Liaoning Province(No.SY2016004)the Colleges and Universities Excellent Talents Supporting Plan Program of Liaoning Province(No.LJQ2015049)
文摘This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material.
基金supported by the Natural Science Foundation of Guangdong province(2022A1515010161)the Guangdong Basic and Applied Basic Research Foundation(2021B1515130008)the National Natural Science Foundation of China(51977062).
文摘Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields.
基金National Key Research and Development Program of China(2021YFA1400800)National Natural Science Foundation of China(12374363)+1 种基金Guangdong Provincial Quantum Science Strategic Initiative(GDZX2306002,GDZX2206001)Guangdong Provincial Natural Science Fund Projects(2024B1515040013)。
文摘Solid-state quantum emitters,such as semiconductor quantum dots(QDs),have numerous significant applications in quantum information science.While there has been some success in controlling structured light from kinds of single-photon sources,the simultaneous on-demand,high-quality,and integrated generation of singlephoton sources with various degrees of freedom remains a challenge.Here,we utilize composite phase-based metasurfaces,comprising transmission phase and geometric phase elements,to modulate the semiconductor QD emission through a simplified fabrication process.This approach enables to decouple the emission into left and right circularly polarized(LCP/RCP)beams in arbitrary directions(e.g.,with zenith angles of 10°and 30°),producing collimated beams with divergence angles less than 6.0°and carrying orbital angular momentum(OAM)modes with different topological charges.Furthermore,we examine the polarization relationship between the output beams and QD emission to validate the performance of our designed devices.Additionally,we achieve eight channels of single-photon emissions,each with well-defined states of spin angular momentum(SAM),OAM,and specific emission directions.Our work not only demonstrates an effective integrated quantum device for the on-demand manipulation of precise direction,collimation,SAM,and various OAM modes,but also significantly advances research efforts in the quantum field related to the generation of multi-OAM single photons.
基金financially supported by the China Postdoctoral Science Foundation(No.2024M751205)。
文摘Flexible phase change materials(PCMs)have become increasingly critical to address the demand for thermal management in electronic technologies and energy conversion.However,their application remains challenging because of their rigidity,liquid leakage,and insufficient thermal conductivity.Herein,flexible glutamic acid@natural rubber/paraffin wax(PW)/carbon nanotubes-graphene nanoplatelets(GNR/PW/CGNP)phase change composites with high thermal conductivity,excellent shape stability,and recyclability were reported.Zn^(2+)-based dynamic crosslinking was constructed through the reaction of zinc acetate and carboxyl groups on glutamic acid@natural rubber(GNR),which was used as a flexible matrix to physically blend with paraffin wax/carbon nanotubes/graphene nanoplatelets(PW/CGNP)to achieve uniform dispersion of PW/CGNP,continuous thermal conductivity networks,and good encapsulation of PW.The GNR/PW/CGNP composites showed excellent mechanical strength,flexibility,and recycling ability,and effective encapsulation prevented the outflow of melted PW during the phase transition.Also,the phase change enthalpy could attain 111.1 J/g with a higher thermal conductivity of 1.055 W/m K,428%higher than that of pure PW owing to the formation of efficient thermal conductive pathways,which exhibited outstanding thermal management performance and superior temperature control behavior in electronic devices.The developed flexible composite PCMs may open new possibilities for next-generation flexible thermal management electronics.
基金supported by the National Key Research and Development Program of China (2023YFB2406500)National Natural Science Foundation of China (52406214)。
文摘Cold sintering as a new technology for the fabrication of ceramic composites could overcome the shortcomings of traditional high temperature sintering approach and achieve dense structure in the composite at a relatively low temperature(<200℃).In this work,a shape stabilization phase change composite is fabricated and investigated by dint of such new fabrication approach,in which a mixed nitrate salt of NaNO_(3)-KNO_(3) is used as phase change material and magnesia powder is acted as structure skeleton.Using of deionized water as sintering additive,the effects of sintering agent content,sintering temperature,uniaxial pressure and time on the composite microstructure characteristics and macroscopic properties are evaluated.The results show that the liquid salt could be effectively accommodated in the magnesia skeleton,forming a dense and stable structure in the composite.There is existence of optimal cold sintering parameters at which a benign combination of mechanical strength and thermal cycling performance could be attained in the composite.Under the sintering temperature of150℃,duration time of 8 min,uniaxial pressure of 150 MPa,and water mass content of 7%,the fabricated composite exhibits a heat storage density of 610 kJ/kg at its potential utilization temperature range of30℃-580℃ and a compressive strength over 240 MPa with a dense density higher than 98%,demonstrating that it can be a viable alternative used in thermal energy storage domains.
基金support from the National Natural Science Foundation of China(No.21878218)the Tianjin Research Innovation Project for Postgraduate Students(No.2023KJ262)+2 种基金the State Grid Corporation of China’s Research Program(No.5419-202019385A)the Fundamental Research Funds for the Central Universities(No.92320006)the Tianjin Key Science and Technology Program(No.18ZXSZSF00030)。
文摘Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems.
基金supported by the National Key Research and Development Program of China(No.2022YFB3708400)the National Natural Science Foundation of China(No.52305158)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology(No.USCAST2021-18).
文摘Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive performance of materials,but the processing difficulty,especially in ceramics forming,limits the control and innovation of material architecture.Here,combined with 3D printing and squeeze infiltration technology,two precisely controllable architectures of AZ91/Al_(2)O_(3)interpenetrating phase composites(IPC)with ceramic scaffold were prepared.The interface,properties and impact of different architecture on IPC performance were studied by experiments and finite element simulation.The metallurgical bonding of the interface was realized with the formation of MgAl_(2)O_(4)reaction layer.The IPC with 1 mm circular hole scaffold(1C-IPC)exhibited significantly improved elastic modulus of 164 GPa,high compressive strength of 680 MPa,and good CTE of 12.91×10^(-6)K^(−1),which were 3.64 times,1.98 times and 55%of the Mg matrix,respectively.Their elastic modulus,compressive strength,and CTE were superior to the vast majority of Mg alloys and Mg based composites.The reinforcement and matrix were bicontinuous and interpenetrating each other,which played a critical role in ensuring the potent strengthening effect of the Al_(2)O_(3)reinforcement by efficient load transfer.Under the same volume fraction of reinforcements,compared to IPC with 1 mm hexagonal hole scaffold(1H-IPC),the elastic modulus and compressive strength of 1C-IPC increased by 15%and 28%,respectively,which was due to the reduced stress concentration and more uniform stress distribution of 1C-IPC.It shows great potential of architecture design in improving the performance of composites.This study provides architectural design strategy and feasible preparation method for the development of high performance materials.
基金supported by the National key research and development plan of China(No.2022YFC3800401)the Fundamental Research Funds for the Central Universities(FRF-BD-20-09A).
文摘Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal energy storage(LTES)systems is hampered due to its high supercooling and low thermal conductivity.In this work,modified A-alum(M-PCM)containing different nucleating agents was prepared and further adsorbed in expanded graphite(EG)to obtain composite phase change material(CPCM)to overcome the disadvantages of A-alum.Thermal properties,thermal cycle stability,microstructure and chemical compatibility of CPCM were characterized by differential scanning calorimetry,thermal constant analysis,scanning electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy.The cold rewarming phenomenon of CPCM was established and explained.Results showed that the latent heat and melting point of CPCM were 187.22 J/g and 91.54℃,respectively.The supercooling of CPCM decreased by 9.61℃,and thermal conductivity increased by 27 times compared with pure A-alum.Heat storage and release tests indicated that 2 wt%calcium chloride dihydrate(CCD,CaCl_(2)·2H_(2)O)was the optimum nucleating agent for A-alum.The result of TG and 30 thermal cycles revealed that CPCM exhibited favorable thermal stability and reliability during the operating temperature.The prepared modified A-alum/EG CPCM has a promising application prospect for LTES.
基金Support provided by National Basic Research Program of China(Grant No.2012CB933200)National Natural Science Foundation of China(Grant No:51161140332,Grant No.51476172)
文摘In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability.The thermal performance of CPCM is significantly improved.The efficiency of temperature control can be obviously improved by adding metal foam in phase change material.CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin.An approximate plateau appears.The plateau can be considered as the temperature control zone of CPCM.Heat can be transferred fiom hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability.Natural convection promotes the melting of solid-liquid phase change material.Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material.The interior temperature difference decreases and the whole temperature becomes more uniform.For the same porosity with a metal foam,melting time of solid-liquid phase change material decreases.Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller.The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces.The research results can be used to guide fabricating the CPCM.
基金the National Natural Science Foundation of China(Project No:51821004)the Beijing Natural Science Foundation(Project No.:L242074).
文摘Lithium-ion batteries(LIBs)are progressing towards higher energy densities,extended lifespans,and improved safety.However,battery thermal management systems are facing increased demand owing to high-rate charging and discharging,dynamic operating conditions,and heightened thermal safety concerns.Therefore,this paper proposes a novel composite phase change material(CPCM)comprising Na2SO4–10H2O as the core phase change material(PCM)and expanded graphite as the thermal conductivity enhancer.The CPCM offers high latent heat,superior thermal conductivity,and a two-stage temperature control function for battery thermal management and safety.The optimal mass CPCM ratio,determined through comprehensive characterization and thermal property tests,resulted in a melting point of 29.05℃,latent heat of 183.7 J·g^(-1),and high thermal conductivity of 3.926 W·m^(-1)·K^(-1).During normal LIB operations,the CPCM efficiently absorbs and transfers heat,reducing the peak LIB temperature from 66 to 34℃at 15℃ambient temperature during a 3.7C high-rate discharge.Under dynamic conditions,the peak temperatures across the three cycles were consistently controlled at 36.7,36.4,and 35.8℃,respectively.In a thermal runaway state,the thermochemical heat storage of hydrated salt dehydration effectively slowed LIB temperature increase,delaying the time to reach 130℃by 187 s.Suppression of the temperature rise outside the CPCM,combined with an extended dehydration plateau of up to 320 s,prevented the occurrence and propagation of thermal runaway in the battery.
基金This work is supported by National Key R&D Program of China(No.2022YFB2405204).
文摘Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs.
基金supported by the National Key Technology R&D Program of China (Grant Nos. 2020YFB1709301 and 2020YFB1709304)the National Natural Science Foundation of China (No. 52173036 and 52073107)+3 种基金the Central University Basic Research Fund of China (Grants 2021XXJS035)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (Grants B21003)the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology),Ministry of Education (Grant No. KFKT2002)fund from Henan University of Science and Technology (2020-RSC02)
文摘The development of functional composites with excellent thermal management capabilities and electro-magnetic interference(EMI)shielding has become extremely urgent for keeping up with the continuous improvement of the operating speed and efficiency for electronic equipment.In this study,the biolog-ical wood-derived porous carbon(WPC)was determined as the supporting material to encapsulating polyethylene glycol(PEG),and a series of WPC/PEG/Fe_(3)O_(4) phase change composites(PCCs)with excel-lent shape stability,EMI shielding and thermal management capabilities were prepared via a simple vac-uum impregnation method.The Fe_(3)O_(4) magnetic particles modified PCCs have greatly improved the EMI shielding effectiveness(SE).The EMI SE of WP-4(7.5 wt.% Fe_(3)O_(4) in PEG)can be up to 55.08 dB between 8.2−12.4 GHz,however,the WP-0 without Fe_(3)O_(4) addition is only 40.08 dB.Meanwhile,the absorption ratio of electromagnetic waves(EMW)has also increased from 75.02%(WP-0)to 85.56%(WP-4),which effectively prevents secondary pollution.In addition,after wrapping a thin layer of polydimethylsiloxane resin(PDMS),the obtained WP-4 can maintain a high heat storage capacity(109.52 J/g)and good wa-ter stability.In short,the prepared WPC/PEG/Fe_(3)O_(4) PCCs have great potential application value in the thermal management and electromagnetic shielding requirements for electronic devices.
基金supported by the National Natural Science Foundation of China (Nos.52171184,51771220,51771095)Zhejiang Provincial Natural Science Foundation of China (No.LD19E010001).
文摘Nanostructure of magnetically hard and soft materials is fascinating for exploring next-generation ul-trastrong permanent magnets with less expensive rare-earth elements.However,the resulting hard/soft nanocomposites often exhibit a low remanence/energy product due to the challenge in obtaining ideal phase components and appropriate soft phase fraction.In this work,a novel microstructure of multiple phases consisting of 1:5 phase and 1:3 phase as main hard phase,and a high ratio of Fe(Co)(27 wt.%-48 wt.%)as soft phase was obtained in Sm-Co(Fe)/Fe nanocomposite magnet.The grain size of both hard and soft phases below 15 nm was observed.The optimal energy product for Sm-Co(Fe)/Fe(Co)nanocom-posite is 2.1 times(an increment of 107%)of the corresponding single-hard-phase powders without soft phase.It reports that the isotropic nanocomposite powders exhibit a record of magnetic energy product larger than 25 MGOe(the highest value is 28.6 MGOe).The high performance and the microstructure achieved in this work for the isotropic powders will shed light on and provide a good premise for syn-thesizing high performance anisotropic bulk nanocomposite magnets.
文摘Typical O'-sialon-based ceramics, with a formula of Si2-xAlxOl+xN2-x, where x was set as 0.25, were fabricated by in-situ synthesis Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25-0.30 MPa, and their rnicrostructure, phase content, and thermal conductivity were evaluated. The effects of O'-sialon and β-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O'-sialon-based ceramics decreased with the ratio of O'-sialon/β-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O'-sialon ceramics sintered at 1360℃ was 1.197 W.m-1.K-1.
基金financially supported by Henan Scientific and Technological Research Projects ( 112102210095 )Science Fund for Distinguished Young Scholars of Henan Province ( 124100510019)the Education Department of Henan Province Foundation ( 14A430030)
文摘Al2 O3-Si-Al composite specimens with the size of 25 mm × 25 mm × 125 mm were prepared using fused alumina (as aggregates and fines),ultra-fine α-Al2O3,Si and Al powders as starting materials,liquid phenol formaldehyde resin as the binder,pressing and heating at 800-1 500 ℃ for 3 h under carbon embedded condition.Evolution of phase composition and microstructure of Al2 O3-Si-Al composite during heating from 800 to 1 500 ℃ under carbon embedded condition were studied.The results show that:(1) Al4 C3,AlN and SiC are initially formed at 800-900 ℃ due to reactions of Al and Si with C or CO and N2 ; (2) at 1 000-1 300 ℃,the amounts of Al4C3,AlN and SiC increase with temperature rising and their crystals grow; (3) at 1 400-1 500 ℃,Al4 C3 and AlN disappear,and minor SiAlON crystals are observed; the nonoxide crystals develop well and they are interlaced in the corundum skeleton structure,which creates strengthening and toughening
基金supported by the Czech Science Foundation (grant 19-22662S)Czech Nano Lab project LM2018110 funded by MEYS CR is gratefully acknowledged for the support of the measurements at CEITEC Nano Research Infrastructure+2 种基金MCL acknowledges to Brno Ph.D. Talent scholarship and to the Brno University of Technology Internal Project: CEITEC VUT-J-19-5915SDT acknowledges to CONACYTSNI and SIP-IPN (SAPPI 20220438)LV acknowledges to project no. NU20-08-00150 (MH, Czechia)。
文摘This work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite(Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric,and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research.