Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and...Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance.展开更多
In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding techno...In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding technology.The effects of WC morphology on the phase composition,microstructure,microhardness,and wear resistance of the cladding layer were compared and analyzed.The res-ults show that the surface of the cladding layer was well formed.M_(23)C_(6),M_(7)C_(3),WC,and W_(2)C exist in both cladding layers.With the ad-dition of spherical WC,the diffraction peaks of γ-Co appear on the left side of the main peak of Co6W6C.The area of intergranular carbides accounts for a large proportion in the surface layer which with the fine grains.During the process of laser cladding the spherical WC particles with loose structure are prone to melting,including their interior.However,the melting amount of irregular WC particles is finite,which only occurs on the periphery of the particles,and the particle interior is relatively intact.The microhard-ness of two cladding layers gradient increases from the substrate to the surface layer.The surface layer added spherical WC has high-er microhardness,which reaches 790.6 HV1.Nevertheless,the wear resistance of the cladding layer added irregular WC is better than that of the cladding layer added spherical WC.The reason is because that the incompletely melted irregular WC particles are uni-formly distributed in the cladding layer which provided the support points for the cladding layer matrix during the wear process,the wear of the cladding layer by the grinding pair is reduced consequently.展开更多
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic...Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.展开更多
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
Total resection of glioblastoma(GB)tumors is nearly impossible,and systemic administration of temozolomide(TMZ)is often inadequate.This study presents a hybrid layered composite nanofiber network(LHN)designed for loca...Total resection of glioblastoma(GB)tumors is nearly impossible,and systemic administration of temozolomide(TMZ)is often inadequate.This study presents a hybrid layered composite nanofiber network(LHN)designed for localized treatment in GB tumor bed.The LHN,consisting of polyvinyl alcohol and core-shell polylactic acid layers,was loaded with TMZ and rutin.In vitro analysis revealed that LHN^(TMZ) and LHNrutin decelerated epithelial-mesenchymal transition and growth of stem-like cells,while the combination,LHN^(TMZ)+rutin,significantly reduced sphere size compared to untreated and LHNTMZ-treated cells(P<0.0001).In an orthotopic C6-induced GB rat model,LHNTMZ+rutin therapy demonstrated a more pronounced tumor-reducing effect than LHNTMZ alone.Tumor volume,assessed by magnetic resonance imaging,was significantly reduced in LHN^(TMZ)+rutin-treated rats compared to untreated controls.Structural changes in tumor mitochondria,reduced membrane potential,and decreased PARP expression indicated the activation of apoptotic pathways in tumor cells,which was further confirmed by a reduction in PHH3,indicating decreased mitotic activity of tumor cells.Additionally,the local application of LHNs in the GB model mitigated aggressive tumor features without causing local tissue inflammation or adverse systemic effects.This was evidenced by a decrease in the angiogenesismarker CD31,the absence of inflammation or necrosis in H&E staining of the cerebellum,increased production of IFN-γ,decreased levels of interleukin-4 in splenic T cells,and lower serum AST levels.Our findings collectively indicate that LHN^(TMZ)+rutin is a promising biocompatible model for the local treatment of GB.展开更多
Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles,...Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.展开更多
A low carbon steel (LCS)/high chromium white cast iron (HCCI) bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate...A low carbon steel (LCS)/high chromium white cast iron (HCCI) bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate. A clear and distinguishable composite layer between the LCS and the HCCI was detected with SEM, and the composition and phase were analyzed through EDS and XRD. The composite layer was composed of three sublayers from the LCS to the HCCI: pearlite transition layer, composite layer, and HCCI transition layer. The Vickers hardness from the pearlite transition layer to the HCCl transition layer was 360 HV to 855 HV. The austenite grows as dendrites between the composite layer and the HCCI transition layer under constitutional undercooling. A large amount of C and Cr, and a small amount of Si and Mn dissolve in the matrix. Granular Cr7C3 is uniformly distributed. Due to the solute redistribution at the solid-liquid interface, the primary austenite grows from planar to cellular and finally to the distinct dendrite crystals. The dendrite crystals have an obvious growth direction perpendicular to the composite layer.展开更多
Combining high conductivity,hydrophilicity and excellent electrochemical perfo rmance in one,MXe nes have attracted increasing attention since their inception.However,easy to stack caused by the van der Waals’force b...Combining high conductivity,hydrophilicity and excellent electrochemical perfo rmance in one,MXe nes have attracted increasing attention since their inception.However,easy to stack caused by the van der Waals’force between the layers limits their practical application.Fortunately,intercalating other substances between layers of MXe nes and getting intercalated MXene-based layered composites(IMLCs)with open structure can improve their physical and chemical properties effectively.Larger available surface helps expose more active sites and enlarged layer spacing facilitates ion transport.In addition,other substances fixed in the interlayers by MXenes’two-dimensional confinement effect can produce synergistic effect and expand their applicable range greatly.This review is dedicated to summarizing the preparation methods and applications of IMLCs,emphasizing the advantages of them in the fields of energy storage,catalysis,sensors,electromagnetic interference(EMI)shielding and biomedicine.Furthermore,prospects and further developments in these gratifying fields are also commented.展开更多
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the...The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
Tungsten inert gas(TIG) welding was applied to creating a composite layer on the surface of cast aluminum alloy A380. Different mixtures of Al, Si and SiC powders mixed with sodium silicate solution were pasted on s...Tungsten inert gas(TIG) welding was applied to creating a composite layer on the surface of cast aluminum alloy A380. Different mixtures of Al, Si and SiC powders mixed with sodium silicate solution were pasted on substrates. Surface melting was conducted by TIG welding to produce Al-SiC layer on the surface. Microstructural evolution was investigated by X-ray diffractometry(XRD), optical and scanning electron microscopy(SEM) and elemental microanalysis(EDS). Properties of clad layers were studied by microhardness and sliding wear testing. The results showed a uniform distribution of SiC particles in dendritic aluminum matrix. Addition of excess silicon caused the formation of eutectic crystals and coarse silicon particles in the clad layer which resulted in higher hardness and wear resistance of clad layers.展开更多
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)...To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.展开更多
The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first stu...The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.展开更多
The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three...The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material.展开更多
Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic...Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.展开更多
Fe-Cr-Ni/Al-Si-Cu-Ni-Mg composite was taken as the experimental material. The chemical composition of interfacial layer was tested. The generation mechanism and influence of interfacial layer on the composite were ana...Fe-Cr-Ni/Al-Si-Cu-Ni-Mg composite was taken as the experimental material. The chemical composition of interfacial layer was tested. The generation mechanism and influence of interfacial layer on the composite were analyzed. The results indicated that the generation of interfacial layer is sensitive to temperature. Interfacial layer will generate rapidly when temperature reaches 500 ℃ or above. The interfacial layer is mainly composed of Al, Si, Cu, Fe, and Cr, element Ni distributes at the outward of the interfacial layer for the precipitate of Ni later than Si and Cu, and there is almost no diffusion of Ni during the solution treatment. During heat treatment process, unequal quantity changing of metal atom results in disperse or concentrated vacancies or holes near the matrix. The existence of interfacial layer will induce a decrease of compression strength and plasticity at room temperature and an increase of strength at higher temperature comparing with composite without interfacial layer.展开更多
A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is use...A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.展开更多
In this paper, the NU308 bearing rings were subjected to strengthen grinding treatment (SGT) at ambient temperature. And the running reliabilities of specimens that subjected to SGT and conventional treatment (CT) wer...In this paper, the NU308 bearing rings were subjected to strengthen grinding treatment (SGT) at ambient temperature. And the running reliabilities of specimens that subjected to SGT and conventional treatment (CT) were respectively investigated by testing dynamic properties including the running temperature, vibrations, and surface burning. Moreover, the residual stress, microtopography, and microstructures on the cross-section were respectively tested with residual stress analyzer and field-emission scanning electron microscopy. The results showed that the running reliabilities of the specimen after SGT had been significantly improved with the reduction of running temperature, vibration, and surface burning. Further study showed that the specimen’s surface was filled with disordered micropores after SGT compared to the regular strip texture on the CT specimen’s surface, and the maximum residual compressive stress induced by SGT was about −900 MPa. Moreover, the thickness of the residual compressive stress layer was over 180 µm, while the thickness of severe plastic deformation layer was about 50 µm.展开更多
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the ...Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.展开更多
1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,a...1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,and attractive high temperature展开更多
文摘Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance.
基金supported by the National Natural Science Foundation of China(52161007)Science and Technology Planning Project of Guangdong Province of China(20170902,20180902)+1 种基金Science and Technology Planning Project of Yangjiang City of Guangdong Province(SDZX2020009)Research project of Shenzhen city(JSGG20210420091802007).
文摘In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding technology.The effects of WC morphology on the phase composition,microstructure,microhardness,and wear resistance of the cladding layer were compared and analyzed.The res-ults show that the surface of the cladding layer was well formed.M_(23)C_(6),M_(7)C_(3),WC,and W_(2)C exist in both cladding layers.With the ad-dition of spherical WC,the diffraction peaks of γ-Co appear on the left side of the main peak of Co6W6C.The area of intergranular carbides accounts for a large proportion in the surface layer which with the fine grains.During the process of laser cladding the spherical WC particles with loose structure are prone to melting,including their interior.However,the melting amount of irregular WC particles is finite,which only occurs on the periphery of the particles,and the particle interior is relatively intact.The microhard-ness of two cladding layers gradient increases from the substrate to the surface layer.The surface layer added spherical WC has high-er microhardness,which reaches 790.6 HV1.Nevertheless,the wear resistance of the cladding layer added irregular WC is better than that of the cladding layer added spherical WC.The reason is because that the incompletely melted irregular WC particles are uni-formly distributed in the cladding layer which provided the support points for the cladding layer matrix during the wear process,the wear of the cladding layer by the grinding pair is reduced consequently.
文摘Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金This study was supported by Scientific and Technological Research Council of Turkey(TUBITAK)under the Grant Number 121S624.
文摘Total resection of glioblastoma(GB)tumors is nearly impossible,and systemic administration of temozolomide(TMZ)is often inadequate.This study presents a hybrid layered composite nanofiber network(LHN)designed for localized treatment in GB tumor bed.The LHN,consisting of polyvinyl alcohol and core-shell polylactic acid layers,was loaded with TMZ and rutin.In vitro analysis revealed that LHN^(TMZ) and LHNrutin decelerated epithelial-mesenchymal transition and growth of stem-like cells,while the combination,LHN^(TMZ)+rutin,significantly reduced sphere size compared to untreated and LHNTMZ-treated cells(P<0.0001).In an orthotopic C6-induced GB rat model,LHNTMZ+rutin therapy demonstrated a more pronounced tumor-reducing effect than LHNTMZ alone.Tumor volume,assessed by magnetic resonance imaging,was significantly reduced in LHN^(TMZ)+rutin-treated rats compared to untreated controls.Structural changes in tumor mitochondria,reduced membrane potential,and decreased PARP expression indicated the activation of apoptotic pathways in tumor cells,which was further confirmed by a reduction in PHH3,indicating decreased mitotic activity of tumor cells.Additionally,the local application of LHNs in the GB model mitigated aggressive tumor features without causing local tissue inflammation or adverse systemic effects.This was evidenced by a decrease in the angiogenesismarker CD31,the absence of inflammation or necrosis in H&E staining of the cerebellum,increased production of IFN-γ,decreased levels of interleukin-4 in splenic T cells,and lower serum AST levels.Our findings collectively indicate that LHN^(TMZ)+rutin is a promising biocompatible model for the local treatment of GB.
基金Projects(51071070,51271079)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0156)supported by New Century Excellent Talents in University,China
文摘Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.
基金financially supported by the National Natural Science Foundation of China Project under grant No.51371090the Science and Technology Support Program of 12th Five-Year Plan under grant No.2011BAD20B03010401+4 种基金the Educational Department Surface Project of Heilongjiang Province under grant No.12521519the Cultivation Plan of the New Century Excellent Talents of Heilongjiang Province under grant No.1155-NCET-017the College Student Science and Technology Innovation of Heilongjiang Province under grant No.201410222037the College Student Science and Technology Innovation of Jiamusi University under grant No.xsld2014-002Graduate Student Science and Technology Innovation of Jiamusi University LZR2014_007
文摘A low carbon steel (LCS)/high chromium white cast iron (HCCI) bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate. A clear and distinguishable composite layer between the LCS and the HCCI was detected with SEM, and the composition and phase were analyzed through EDS and XRD. The composite layer was composed of three sublayers from the LCS to the HCCI: pearlite transition layer, composite layer, and HCCI transition layer. The Vickers hardness from the pearlite transition layer to the HCCl transition layer was 360 HV to 855 HV. The austenite grows as dendrites between the composite layer and the HCCI transition layer under constitutional undercooling. A large amount of C and Cr, and a small amount of Si and Mn dissolve in the matrix. Granular Cr7C3 is uniformly distributed. Due to the solute redistribution at the solid-liquid interface, the primary austenite grows from planar to cellular and finally to the distinct dendrite crystals. The dendrite crystals have an obvious growth direction perpendicular to the composite layer.
基金supported by the National Natural Science Foundation of China(Nos.21776061,21978069,21707081 and 41807128)the program for Science&Technology Innovation Team in Universities of Henan Province(No.19IRTSTHN029)。
文摘Combining high conductivity,hydrophilicity and excellent electrochemical perfo rmance in one,MXe nes have attracted increasing attention since their inception.However,easy to stack caused by the van der Waals’force between the layers limits their practical application.Fortunately,intercalating other substances between layers of MXe nes and getting intercalated MXene-based layered composites(IMLCs)with open structure can improve their physical and chemical properties effectively.Larger available surface helps expose more active sites and enlarged layer spacing facilitates ion transport.In addition,other substances fixed in the interlayers by MXenes’two-dimensional confinement effect can produce synergistic effect and expand their applicable range greatly.This review is dedicated to summarizing the preparation methods and applications of IMLCs,emphasizing the advantages of them in the fields of energy storage,catalysis,sensors,electromagnetic interference(EMI)shielding and biomedicine.Furthermore,prospects and further developments in these gratifying fields are also commented.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
文摘Tungsten inert gas(TIG) welding was applied to creating a composite layer on the surface of cast aluminum alloy A380. Different mixtures of Al, Si and SiC powders mixed with sodium silicate solution were pasted on substrates. Surface melting was conducted by TIG welding to produce Al-SiC layer on the surface. Microstructural evolution was investigated by X-ray diffractometry(XRD), optical and scanning electron microscopy(SEM) and elemental microanalysis(EDS). Properties of clad layers were studied by microhardness and sliding wear testing. The results showed a uniform distribution of SiC particles in dendritic aluminum matrix. Addition of excess silicon caused the formation of eutectic crystals and coarse silicon particles in the clad layer which resulted in higher hardness and wear resistance of clad layers.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites.
基金supported by the National Natural Science Foundation of China(Nos.11002026 and 11372039)Beijing Natural Science Foundation(No.3133039)the Scientific Research Foundation for the Returned(No.20121832001)
文摘The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0207104)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040101)+2 种基金the National Natural Science Foundation of China(Grant No.Y6061111JJ)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2015030)the Key Technology Talent Program of Chinese Academy of Sciences(Grant Nos.Y8482911ZX and Y7602921ZX)
文摘The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material.
基金Engineering Research Institute of Peking University (ERIPKU) Joint Building Project of Beijing Education Committee
文摘Theoretical analysis and numerical calculations of Love wave propagation in layered graded composites with imperfectly bonded interface are described in this paper. On the basis of WKB method, the approximate analytic solutions for Love waves are obtained. By the interface shear spring model, the dispersion relations for Love waves in layered graded composite structures with rigid, slip, and imperfectly bonded interfaces are given, and the effects of the interface conditions on the phase velocities of Love waves in SiC/Al layered graded composites are discussed. Numerical analysis shows that the phase velocity decreases when the defined flexibility parameter is greater. For the general imperfectly bonded interface, the phase velocity changes in the range of the velocities for the rigid and slip interface conditions.
基金Funded by the Program of International S&T Cooperation(No.2013DFA51230)the Opening Subject Fund of Ningbo University(No.zj1226)
文摘Fe-Cr-Ni/Al-Si-Cu-Ni-Mg composite was taken as the experimental material. The chemical composition of interfacial layer was tested. The generation mechanism and influence of interfacial layer on the composite were analyzed. The results indicated that the generation of interfacial layer is sensitive to temperature. Interfacial layer will generate rapidly when temperature reaches 500 ℃ or above. The interfacial layer is mainly composed of Al, Si, Cu, Fe, and Cr, element Ni distributes at the outward of the interfacial layer for the precipitate of Ni later than Si and Cu, and there is almost no diffusion of Ni during the solution treatment. During heat treatment process, unequal quantity changing of metal atom results in disperse or concentrated vacancies or holes near the matrix. The existence of interfacial layer will induce a decrease of compression strength and plasticity at room temperature and an increase of strength at higher temperature comparing with composite without interfacial layer.
文摘A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.
文摘In this paper, the NU308 bearing rings were subjected to strengthen grinding treatment (SGT) at ambient temperature. And the running reliabilities of specimens that subjected to SGT and conventional treatment (CT) were respectively investigated by testing dynamic properties including the running temperature, vibrations, and surface burning. Moreover, the residual stress, microtopography, and microstructures on the cross-section were respectively tested with residual stress analyzer and field-emission scanning electron microscopy. The results showed that the running reliabilities of the specimen after SGT had been significantly improved with the reduction of running temperature, vibration, and surface burning. Further study showed that the specimen’s surface was filled with disordered micropores after SGT compared to the regular strip texture on the CT specimen’s surface, and the maximum residual compressive stress induced by SGT was about −900 MPa. Moreover, the thickness of the residual compressive stress layer was over 180 µm, while the thickness of severe plastic deformation layer was about 50 µm.
基金financially supported by the National Natural Science Foundation of China(No.21376276)the Specialfunded Program on National Key Scientific Instruments and Equipment Development of China(No.2012YQ230043)+1 种基金Guangdong Province Sci&Tech Bureau(Key Strategic Project No.2008A080800024)the Fundamental Research Funds for the Central Universities
文摘Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.
文摘1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,and attractive high temperature