We propose a wavelength selective diffraction using reflectors placed on three-dimensional grid cross points. Different wavelengths are separated into spots distributed in two-dimensional plane. Compact device with hi...We propose a wavelength selective diffraction using reflectors placed on three-dimensional grid cross points. Different wavelengths are separated into spots distributed in two-dimensional plane. Compact device with high port counts is attainable.展开更多
The interfacial performance of the Fiber Bragg grating(FGB) embedded in the composite was studied and the influence of interface modification on the final profile of the spectra of the FBG sensor was examined. A typ...The interfacial performance of the Fiber Bragg grating(FGB) embedded in the composite was studied and the influence of interface modification on the final profile of the spectra of the FBG sensor was examined. A type of polyamine(Pentaethylenehexamine, PEHA) was proposed to modify the coating of PI on FBG, and the interfacial performance was evaluated by a pull-out test. Sharp improvements of the interfacial shear strength(77%) were obtained by 40 min treatment of PEHA. Compared with untreated specimen, FGB spectra of treated specimen in the tensile tests show improved linearity within the test regime, which proves that the enhanced interface is beneficial for the sensing performance.展开更多
In this paper,a novel liquid level sensor with ultra-high sensitivity is proposed.The proposed sensor is configured by a sliceshaped composite long period fiber grating(SSC-LPFG).The SSC-LPFG is prepared by polishing ...In this paper,a novel liquid level sensor with ultra-high sensitivity is proposed.The proposed sensor is configured by a sliceshaped composite long period fiber grating(SSC-LPFG).The SSC-LPFG is prepared by polishing two opposite sides of a composite multimode-single-mode-multimode fiber structure using a CO;laser.The method improves the sensitivity of the sensor to external environment.Based on the simulation calculation,a liquid level sensor with a length of 3 mm is designed.The experimental transmission spectrum agrees well with the simulation result.The experimental results show that the sensitivity reaches 7080 pm/mm in the liquid level range of 0-1400 μm in water.The temperature sensitivity is24.52 pm/℃ in the range of 20℃-90℃.Due to the ultra-high sensitivity,good linearity,and compact structure,the SSC-LPFG has potential application in the field of high-Drecision liquid level measurement.展开更多
A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patte...A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making highdensity detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.展开更多
文摘We propose a wavelength selective diffraction using reflectors placed on three-dimensional grid cross points. Different wavelengths are separated into spots distributed in two-dimensional plane. Compact device with high port counts is attainable.
基金Funded by the Fundamental Research Funds for the Central Universities(xjj2017160)the National Science and Technology Major Project(2014ZX04001091)
文摘The interfacial performance of the Fiber Bragg grating(FGB) embedded in the composite was studied and the influence of interface modification on the final profile of the spectra of the FBG sensor was examined. A type of polyamine(Pentaethylenehexamine, PEHA) was proposed to modify the coating of PI on FBG, and the interfacial performance was evaluated by a pull-out test. Sharp improvements of the interfacial shear strength(77%) were obtained by 40 min treatment of PEHA. Compared with untreated specimen, FGB spectra of treated specimen in the tensile tests show improved linearity within the test regime, which proves that the enhanced interface is beneficial for the sensing performance.
基金supported by the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS) (Nos. U1831115, U2031132, U1931206, and U2031130)Natural Science Foundation of Heilongjiang Province (No. ZD2019H003)Fundamental Research Funds for the Central Universities to the Harbin Engineering University
文摘In this paper,a novel liquid level sensor with ultra-high sensitivity is proposed.The proposed sensor is configured by a sliceshaped composite long period fiber grating(SSC-LPFG).The SSC-LPFG is prepared by polishing two opposite sides of a composite multimode-single-mode-multimode fiber structure using a CO;laser.The method improves the sensitivity of the sensor to external environment.Based on the simulation calculation,a liquid level sensor with a length of 3 mm is designed.The experimental transmission spectrum agrees well with the simulation result.The experimental results show that the sensitivity reaches 7080 pm/mm in the liquid level range of 0-1400 μm in water.The temperature sensitivity is24.52 pm/℃ in the range of 20℃-90℃.Due to the ultra-high sensitivity,good linearity,and compact structure,the SSC-LPFG has potential application in the field of high-Drecision liquid level measurement.
文摘A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making highdensity detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.