期刊文献+
共找到216,381篇文章
< 1 2 250 >
每页显示 20 50 100
Design and synthesis of KIT-5/Beta composites under varied hydrothermal temperatures and evaluation of their hydrodenitrogenation performance
1
作者 LIU Xing GUO Shaoqing +7 位作者 CUI Haitao LI Zhenrong LI Xin WANG Lei WU Xingjie WANG Xiaoxiao YUAN Lijing ZHAO Liangfu 《燃料化学学报(中英文)》 北大核心 2026年第1期46-57,共12页
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva... KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI). 展开更多
关键词 mesoporous-microporous material KIT-5/Beta composite NiWS QUINOLINE HYDRODENITROGENATION
在线阅读 下载PDF
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
2
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption compositE
在线阅读 下载PDF
The Microstructure and Properties of Graphene/Copper Composite Wires
3
作者 CHEN Wei CHEN Yufei +2 位作者 KUANG Meizhou CHEN Haibing LIN Gaoyong 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期1-7,共7页
In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires... In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation. 展开更多
关键词 copper-based composite wire GRAPHENE electrical conductivity cold drawing ANNEALING
原文传递
Horizontal Bearing Capacity of Monocolumn Composite Bucket Foundations for Offshore Wind Turbines
4
作者 Hongyan Ding Renhao Wang +1 位作者 Puyang Zhang Conghuan Le 《哈尔滨工程大学学报(英文版)》 2026年第1期162-174,共13页
Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.... Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods. 展开更多
关键词 Monocolumn composite bucket foundations Shallow bedrock Bearing characteristics Offshore wind power Silty soil Chalky soil
在线阅读 下载PDF
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
5
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
Knowledge Maps from Scientometric Review on Composite Marine Risers
6
作者 Chiemela Victor Amaechi Ahmed Reda +8 位作者 Salmia Binti Beddu Daud Bin Mohamed Agusril Syamsir Idris Ahmed Ja’e Bo Huang Chunguang Wang Xuanze Ju Jelson Cassavela Abiodun Kolawole Oyetunji 《Sustainable Marine Structures》 2025年第1期1-20,共20页
With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the resea... With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend. 展开更多
关键词 composite Risers Marine Risers Marine Structure Scientometric Review Bibliometric Analysis composite Material Knowledge Map
在线阅读 下载PDF
Interfacial bonding,texture evolution,and mechanical properties of different structured extruded Mg-7Gd-4Y-1Zn-0.2Zr and Mg-3Zn-1Al-1Ca-0.5Mn composites
7
作者 Abdul Malik Faisal Nazeer +3 位作者 Sehreish Abrar Chunlong Cheng Zheng Chen Ahmed M.Fouda 《Journal of Magnesium and Alloys》 2025年第7期3373-3397,共25页
In the present study,different structured,Mg-7Gd-4Y-1Zn-0.2Zr(GWZ)and Mg-3Zn-1Al-1Ca-0.5Mn(ZA)alloys based bi-metal composites were fabricated through extrusion.In particular,we reported that the strong and large diff... In the present study,different structured,Mg-7Gd-4Y-1Zn-0.2Zr(GWZ)and Mg-3Zn-1Al-1Ca-0.5Mn(ZA)alloys based bi-metal composites were fabricated through extrusion.In particular,we reported that the strong and large diffusional interfacial thickness comprised of fine grains along with the segregation of the different elements at the interfacial region transferred the load to the base of the composite,and hence acted like a bonder and increased the stability of the interfaces.Most specifically,the rare“composite texture”having c-axes//radial direction(RD)and tilted c-axes//extruded direction(ED)with very low texture intensities was developed in all composites,which is the key requirement for retaining high strength and high ductility.The microstructure of GWZ Mg alloy consists of dense lamellar LPSO_(s),blocky LPSO_(s),rod-shaped LPSO_(s),Mg-enriched rare earth(RE)precipitates,and broken square-shaped RE-enriched precipitates.In contrast,the microstructure of ZA Mg alloy is comprised of MgAl_(2)Ca laves,different-shaped Al_(8)Mn_(5),and nano-sized Mg_(17)Al_(12) precipitates.Particularly,after extrusion,the strongly bonded interfacial region was decorated by Al,Ca,Gd,Y,and Zr elements.The WAW bi-metal composite showed a wavy interfacial morphology compared to the AWA and AW bi-metal composites and the diffusional thickness for all composites was quite large(>20μm).Therefore,based on the above brief discussion,the AWA bi-metal composite(having HAGBs>93%),exhibited exceptionally high performance.The elongation to fracture and strength under compression was significantly higher(EF∼50%,UCS∼17.70%)compared to the GWZ Mg alloy.Likewise,the bendability of the AWA bi-metal composite was much higher(∼103.2%)than the GWZ Mg alloy and higher than other composites.Therefore,the fabrication of bi-metal composites is a practical approach in achieving strength and ductility. 展开更多
关键词 Bi-metal composites composite texture Interfacial thickness Segregation at interface Mechanical properties
在线阅读 下载PDF
Effects of composition ratio of TiCu precursor on dealloying behavior in molten Mg and microstructural characteristics of Mg-Ti composites
8
作者 Jee Eun Jang Bo Hyun Park +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 2025年第6期2784-2799,共16页
Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.T... Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing. 展开更多
关键词 Liquid metal dealloying Precursor composition Mg-Ti composite 3D interconnected structure HARDNESS
在线阅读 下载PDF
Investigation on Clay Based Mullite-silica Rich Glass Composites
9
作者 YAN Wen SHI Jinling LI Nan 《China's Refractories》 2025年第1期18-24,共7页
Mullite-silica rich glass(MSRG)composites are a more efficient material than chamotte for industrial utilization of clay in refractory applications.The properties of the MSRG composites depend on the amount and compos... Mullite-silica rich glass(MSRG)composites are a more efficient material than chamotte for industrial utilization of clay in refractory applications.The properties of the MSRG composites depend on the amount and composition of the mulite and glass phases,which are related to the chemical composition of the MSRG composites based on clay.In the present work,the relationship between the phase and the chemical composition of the MSRG composites,and the effects of the chemical composition of the glass phase on the viscosity and coefficient of thermal expansion(CTE)of the glass phase were discussed on the basis of the measurements on 17 MSRG composite samples produced from clay.It is found that the Al_(2)O_(3)/SiO_(2) ratio(AS ratio)in clay strongly affects the amount of the mullite and glass phases in the MSRG composites,and the distributions of SiO_(2),TiO_(2)and Al_(2)O_(3) contents in the mullite and glass phases.With the increase of the A/S ratio of clay,the mullite content increases but the the glass phase content decreases in the MSRG composites.The viscosity and CTE of the glass phase depend on its A/S ratio and the amount of impurity oxides.When the A/S ratio in the glass phase is less than 0.15,the viscosity of the liquid formed by the melting of the glass phase at elevated temperatures rapidly increases with the decrease in the A/S ratio.The CTE of the glass phase depends on the contents of Si0_(2)and(K_(2)O+Na_(2)O). 展开更多
关键词 mullite-silica rich glass composite composition glass phase VISCOSITY coefficient of thermal expansion
在线阅读 下载PDF
Research on fracture characteristics and support mechanism of shallow buried double-soft composite roof
10
作者 ZHANG Wei ZHANG Chun-wang +2 位作者 GUO Wei-yao ZHANG Bao-liang LIU Wan-rong 《Journal of Central South University》 2025年第5期1838-1854,共17页
Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large de... Affected by the geological characteristics of coal bearing strata in western mining areas of China,the double soft composite roof has low strength and poor integrity,which is prone to induce disasters such as large deformation and roof collapse.Four-point bending tests were conducted on anchored double-layer rock beams with different pre tightening force and upper/lower rock strength ratios(Ⅰ/Ⅱ)based on the digital speckle correlation method(DSCM).The research results indicate that the instability process of anchored roof can be divided into stages of elastic deformation,crack propagation,alternating fracture,and failure collapse.The proportion of crack propagation and alternating fracture processes increased with the increase of pre-tightening force and Ⅰ/Ⅱ.The pre-tightening force can suppress the sliding of the upper/lower rock interface,and delay the initiation and propagation of cracks.As Ⅰ/Ⅱ increases,the failure mode changes from tensile failure steel strip to shear failure anchor rod.Steel strip can improve the continued bearing effect of anchored roof during crack propagation and alternating fracture processes. 展开更多
关键词 double-soft composite roof anchored composite beams anchored rock fracture pre-tightening force crack propagation
在线阅读 下载PDF
Shape Memory Properties of Short-Glass Fiber Reinforced Epoxy Composite Programmed below Glass Transition Temperature
11
作者 Kartikey Shahi Velmurugan Ramachandran +1 位作者 Ranjith Mohan Boomurugan Ramachandran 《Journal of Polymer Materials》 2025年第2期477-496,共20页
A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of sho... A Shape Memory Polymer Composite(SMPC)is developed by reinforcing an epoxy-based polymer with randomly oriented short glass fibers.Diverging from previous research,which primarily focused on the hot programming of short glass fiber-based SMPCs,this work explores the potential for programming below the glass transition temperature(Tg)for epoxy-based SMPCs.To mitigate the inherent brittleness of the SMPC during deformation,a linear polymer is incorporated,and a temperature between room temperature and Tg is chosen as the deformation temperature to study the shape memory properties.The findings demonstrate an enhancement in shape fixity and recovery stress,alongside a reduction in shape recovery,with the incorporation of short glass fibers.In addition to tensile properties,thermal properties such as thermal conductivity,specific heat capacity,and glass transition temperature are investigated for their dependence on fiber content.Microscopic properties,such as fiber-matrix adhesion and the dispersion of glass fibers,are examined through Scanning Electron Microscope imaging.The fiber length distribution and mean fiber lengths are also measured for different fiber fractions. 展开更多
关键词 Shape memory polymer composite glass fiber composite shape fixity shape recovery thermomechanical cycle
在线阅读 下载PDF
Research on edge defects suppression of Mg/Al composite plate rolling:Development of embedded rolling technology
12
作者 Chenchen Zhao Zhiquan Huang +3 位作者 Haoran Zhang Peng Li Tao Wang Qingxue Huang 《Journal of Magnesium and Alloys》 2025年第8期3751-3767,共17页
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre... Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates. 展开更多
关键词 Numerical simulation Damage model Stress triaxiality Mg/Al composite plate Embedded composite rolling
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
13
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Towards understanding the microstructure-mechanical property correlations of multi-level heterogeneous-structured Al matrix composites
14
作者 Yuesong Wu Xiaobin Lin +4 位作者 Xudong Rong Xiang Zhang Dongdong Zhao Chunnian He Naiqin Zhao 《Journal of Materials Science & Technology》 2025年第6期117-123,共7页
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda... 1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6]. 展开更多
关键词 reinforcements agglomeration comprehensive mechanical properties agglomeration reinforcements plastic deformation strength ductility trade off multi level heterogeneous structured Al matrix composites microstructure mechanical property correlations al matrix composites amcs
原文传递
Development of Interpenetrating Phase Structure AZ91/Al_(2)O_(3)Composites with High Stiffness,Superior Strength and Low Thermal Expansion Coefficient
15
作者 Zhiqing Chen Zhixian Zhao +6 位作者 Yiqiang Hao Xiaoling Chen Liping Zhou Jingya Wang Tao Ying Bin Chen Xiaoqin Zeng 《Acta Metallurgica Sinica(English Letters)》 2025年第2期245-258,共14页
Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive perform... Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive performance of materials,but the processing difficulty,especially in ceramics forming,limits the control and innovation of material architecture.Here,combined with 3D printing and squeeze infiltration technology,two precisely controllable architectures of AZ91/Al_(2)O_(3)interpenetrating phase composites(IPC)with ceramic scaffold were prepared.The interface,properties and impact of different architecture on IPC performance were studied by experiments and finite element simulation.The metallurgical bonding of the interface was realized with the formation of MgAl_(2)O_(4)reaction layer.The IPC with 1 mm circular hole scaffold(1C-IPC)exhibited significantly improved elastic modulus of 164 GPa,high compressive strength of 680 MPa,and good CTE of 12.91×10^(-6)K^(−1),which were 3.64 times,1.98 times and 55%of the Mg matrix,respectively.Their elastic modulus,compressive strength,and CTE were superior to the vast majority of Mg alloys and Mg based composites.The reinforcement and matrix were bicontinuous and interpenetrating each other,which played a critical role in ensuring the potent strengthening effect of the Al_(2)O_(3)reinforcement by efficient load transfer.Under the same volume fraction of reinforcements,compared to IPC with 1 mm hexagonal hole scaffold(1H-IPC),the elastic modulus and compressive strength of 1C-IPC increased by 15%and 28%,respectively,which was due to the reduced stress concentration and more uniform stress distribution of 1C-IPC.It shows great potential of architecture design in improving the performance of composites.This study provides architectural design strategy and feasible preparation method for the development of high performance materials. 展开更多
关键词 Interpenetrating phase composites Al_(2)O_(3)/Mg composites Interface Elastic modulus Compressive strength Coefficient of thermal expansion(CTE)
原文传递
Comparative Study of MnO_(2)and Fe_(2)O_(3)Composites on Toona ciliata-Derived Carbon for Sustainable Supercapacitor Applications
16
作者 Dibyashree Shrestha 《Journal of Environmental & Earth Sciences》 2025年第7期240-259,共20页
Unmanaged wood waste,particularly in countries like Nepal,presents serious environmental concerns due to open burning and improper disposal,leading to carbon emissions,air pollution and land degradation.This study int... Unmanaged wood waste,particularly in countries like Nepal,presents serious environmental concerns due to open burning and improper disposal,leading to carbon emissions,air pollution and land degradation.This study introduces an environmentally sustainable strategy to upcycle Toona ciliata wood scrap—an abundant and underutilized lignocellulosic biomass—into high performance carbon electrodes for green energy storage applications.Activated carbon(TCWAC)was synthesized via single-step pyrolytic carbonization followed by phosphoric acid activation,yielding a material with high specific surface area,hierarchical porosity,and excellent electrical conductivity.Electrochemical measurements using a three-electrode configuration in 6 M KOH revealed optimized potential windows of -1.0 to -0.2 V(TCWAC),-1.2 to 0 V(TCWAC-Mn),and -1.15 to -0.4 V(TCWAC-Fe).TCWAC exhibited a specific capacitance of 156.3 Fg^(-1)at 1 Ag^(-1),with an energy density of 3.5 Whkg^(-1),and 80.2% capacity retention after 1000 charge-discharge cycles.Composites with MnO_(2)and Fe_(2)O_(3)were also evaluated.TWAC-Mn delivered 489.4 Fg^(-1),25.1 Whkg^(-1),and 99.1% retention,whereas,TWAC-Fe achieved 321.3 Fg^(-1),6.3 Whkg^(-1),and 90.3% retention.The superior performance of MnO_(2)is attributed to its multiple oxidation states,facilitating reversible faradaic redox and enhanced pseudocapacitance.This work offers the first direct,systematic comparison of MnO_(2)and Fe_(2)O_(3)composites on a common biomass-carbon matrix under identical synthesis and testing conditions.The finding provides mechanistic insight into charge storage behaviour and demonstrate a scalable route for converting biomass waste into sustainable electrode materials,contributing to cleaner energy solutions and improved biomass valorization. 展开更多
关键词 Toona ciliata Wood Scrap Activated Carbon Electrodes SUPERCAPACITOR MnO_(2)composites Fe_(2)O_(3)composites Sustainable Energy Storage
在线阅读 下载PDF
Sustainable Biocomposites from Renewable Resources in West Africa:A Review
17
作者 Souha Mansour Amandine Viretto +1 位作者 Marie-France Thevenon Loic Brancheriau 《Journal of Renewable Materials》 2025年第8期1547-1586,共40页
The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents ... The use of agricultural residues in biocomposite production has gained increasing attention,driven by several benefits.Converting agricultural by-products into bio-based materials within a circular economy represents a sustainable strategy to mitigate lignocellulosic waste,reduce reliance on fossil resources,and lower environmental pollution.This approach also creates economic opportunities for rural African communities by generating diverse income sources for workers in collection,processing,and manufacturing.As a result,the integration of agricultural residues into biocomposites production not only addresses environmental concerns but also fosters economic growth and supports rural development.In this review,five biomasses from West Africa are examined,focusing on their production,chemical composition,physical and mechanical properties,and potential applications in biocomposites.The five biomasses listed are cocoa pod husks,oil palm empty fruit bunches,rice husks,millet stalks,and typha stalks.Key parameters,such as the type of binder,fiber dimensions,fiber-to-binder ratio,and the strength of fiber-binder adhesion,are systematically studied to assess their influence on the overall performance of the resulting composites.Special attention is given to understanding how these factors affect mechanical properties(e.g.,strength and flexibility),thermal behavior(e.g.,insulation capacity and heat resistance),and physico-chemical characteristics(e.g.,moisture absorption,density,and chemical stability).This comprehensive analysis provides insights into optimizing composite formulations for enhanced functionality and sustainability.This study is essential to optimize the use of agricultural residues inWest Africa for biocomposites,tackling waste issues,promoting sustainability,and filling research gaps on their properties. 展开更多
关键词 BIOcompositES natural fibers agricultural residues West African biomasses sustainable materials eco-friendly composites
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:6
18
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
19
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Effects of Metal and Composite Metal Nanopowders on the Thermal Decomposition of Ammonium Perchlorate (AP) and the Ammonium Perchlorate/Hydroxyterminated Polybutadiene (AP/HTPB) Composite Solid Propellant 被引量:9
20
作者 刘磊力 李凤生 +2 位作者 谈玲华 李敏 杨毅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期595-598,共4页
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta... Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant. 展开更多
关键词 NANOPOWDER metal powder composite metal powder composite solid propellant ammonium perchlo-rate. thermal decompositionrate thermal decomposition
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部