本文探讨Art to Wear即“可以穿的艺术”,其中大部分作品为服装,少量作品是帽子和首饰。通过分析Art to Wear代表艺术家,解读Art to Wear艺术作品,从而探讨美国20世纪60年代到80年代女性艺术家群体如何以艺术为媒介对自身经历进行叙述...本文探讨Art to Wear即“可以穿的艺术”,其中大部分作品为服装,少量作品是帽子和首饰。通过分析Art to Wear代表艺术家,解读Art to Wear艺术作品,从而探讨美国20世纪60年代到80年代女性艺术家群体如何以艺术为媒介对自身经历进行叙述性表现。60年代末70年代初处于美国女性主义的第二次浪潮,众多美国名校的年轻白人女大学生,不断为女性的参政、就业、医疗、最低工资等争取更多的权利,而到了80年代遭到美国保守主义的强烈打击,追求自由平等的女性主义运动跌入低谷。第二次女性主义运动的跌宕正是Art to Wear艺术运动的发展时期,艺术学院在读青年女生们发起Art to Wear艺术运动,她们在保守主义与激进主义的影响下寻求精神、生活的平衡,极力反叛女性束身塑形来博得男性视觉愉悦、通过同性的嫉妒来肯定自身价值。她们对家庭、事业、社会地位开始深思,通过作品叙述对社会性别与身份认定的迷茫,表达保守与激进思想的内心纠结。展开更多
The microstructural evolution,mechanical properties,and wear behavior of medium manganese steels(MMSs)with varying aluminum(Al)contents were investigated.It was observed that the microstructure of MMS transferred from...The microstructural evolution,mechanical properties,and wear behavior of medium manganese steels(MMSs)with varying aluminum(Al)contents were investigated.It was observed that the microstructure of MMS transferred from a predominantly martensitic phase(in the Al-free state)to a ferrite/martensite or ferrite/austenite duplex structure with increasing Al content.The hardness of MMS decreased with Al addition,while the impact absorbed energy and yield strength were optimized in 2%Al-containing variant.Frictional wear tests demonstrated that 2 wt.%Al-MMS exhibited superior wear resistance due to the twinning-induced plasticity effect.Conversely,under impact abrasion wear conditions,the Al-free MMS displayed the lowest mass loss,attributing to high surface hardness and remarkable work hardening capacity.These findings indicates that Al content-tailored MMSs can be selectively applied in different wear environments,with 2 wt.%Al-MMS being optimal for static load conditions and the Al-free MMS for dynamic impact abrasion scenarios.展开更多
The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus...The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus(SCN)integrates environmental signals to maintain complex and robust circadian rhythms.Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function.Synchrony involves coordinated neuronal firing for robust rhythms,while complexity reflects diverse activity patterns and interactions,indicating adaptability.Interestingly,the SCN retains circadian rhythms in vitro,demonstrating intrinsic rhythmicity.This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels,based on Bagrov et al.’s approach.By examining structural complexity and local complexities across scales,we aim to understand how tetrodotoxin,a neurotoxin that inhibits action potentials,affects SCN neurons.Our method captures critical scales in neuronal interactions that traditional methods may overlook.Validation with the Goodwin model confirms the reliability of our observations.By integrating experimental data with theoretical models,this study provides new insights into the effects of tetrodotoxin(TTX)on neuronal complexities,contributing to the understanding of circadian rhythms.展开更多
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate...Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.展开更多
Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps i...Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.展开更多
This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are...This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.展开更多
The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy wa...The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy was conducted under the conditions of 10,15,and 20 N and abrasive particle sizes of 7,11,18,and 38μm.The results show that the added ZrO_(2)particles in TZM alloy are mainly distributed at the grain boundaries.The grains of TZM alloy containing 1.5wt%ZrO_(2)are significantly refined,and the hardness is increased by 16%.The wear test results show that TZM alloy containing 1.5wt%ZrO_(2)has the lowest mass loss rate and excellent wear resistance under all loads and abrasive sizes,and the wear performance is improved by 12%.The ZrO_(2)with high hardness becomes the main bearer of the load,and as the second-phase,it hinders the abrasive particles from entering the matrix and effectively resists the scratch of the abrasive particles,which is the main reason for the excellent wear resistance.展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
The impact-abrasive wear behavior of high-C martensitic steel was investigated,taking into account varying carbon(C)contents and different tempering temperatures.The evaluation was done through comprehensive microstru...The impact-abrasive wear behavior of high-C martensitic steel was investigated,taking into account varying carbon(C)contents and different tempering temperatures.The evaluation was done through comprehensive microstructural characterization,analysis of worn surface morphology,and measurement of key performance like impact toughness and surface hardening.The findings demonstrate that increasing C content and tempering temperature both has a positive effect on wear resistance,with C content exhibiting a more pronounced influence compared to the tempering temperature.The improved wear resistance of the steel with higher C content and tempering at a higher temperature can be attributed to its enhanced impact toughness.This increase in impact toughness is primarily a result of microstructural refinement and alterations in carbide morphology.Moreover,cyclic impact loading induces surface hardening due to dislocation strengthening within the martensite and the retained austenite,leading to an increase in surface hardness.The combination of surface hardening and excellent impact toughness synergistically contributes to the overall improved wear resistance observed in the experimental steel with higher C content after tempering at a higher temperature.Additionally,the dominant features observed on the worn surface are scratches and substrate delamination,indicative of a wear mechanism of the experimental steels characterized by micro-cutting/ploughing and fatigue wear.展开更多
The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertai...The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertainties. This study identifies 20 complexity factors through expert interviews and literature, categorising them into six groups. The Analytical Hierarchy Process evaluated the significance of different factors, establishing their corresponding weights to enhance adaptive project scheduling. A system dynamics (SD) model is developed and tested to evaluate the dynamic behaviour of identified complexity factors. The model simulates the impact of complexity on total project duration (TPD), revealing significant deviations from initial deterministic estimates. Data collection and analysis for reliability tests, including normality and Cronbach alpha, to validate the model’s components and expert feedback. Sensitivity analysis confirmed a positive relationship between complexity and project duration, with higher complexity levels resulting in increased TPD. This relationship highlights the inadequacy of static planning approaches and underscores the importance of addressing complexity dynamically. The study provides a framework for enhancing planning systems through system dynamics and recommends expanding the model to ensure broader applicability in diverse construction projects.展开更多
Medium-manganese steel exhibits excellent strength and toughness,which are essential features in wear resistance applications.This study examines the impact of annealing temperature on impact abrasive wear.The results...Medium-manganese steel exhibits excellent strength and toughness,which are essential features in wear resistance applications.This study examines the impact of annealing temperature on impact abrasive wear.The results have indicated that samples annealed at different temperatures display plowing and fatigue wear effects.In the initial wear stage,the hightemperature annealed steel outperforms samples annealed at a lower temperature in terms of anti-plowing wear performance.This phenomenon is mainly due to the lower initial hardness of the samples subjected to low-temperature annealing.However,with prolonged wear time,the low-temperature annealed samples exhibit improved plowing wear performance,which is ascribed to a refinement of the lamellar microstructure and an increased residual austenite(RA),which enhances the work hardening effect,improving the hardness of the worn surface.The low-temperature annealed samples consistently delivered superior fatigue wear performance when compared with samples annealed at the higher temperature.The latter effect may be attributed to two factors.Firstly,the finer lamellar microstructure in the low-temperature annealed samples,coupled with greater RA,results in transformation-induced plasticity or twin-induced plasticity effect that hinders crack formation and propagation.Secondly,the low-temperature annealed samples form nanoscale equiaxed grains near the worn surface during the wear process.These grains can withstand crack driving forces in fine-grained regions,suppressing the formation and propagation of cracks.展开更多
Objective:To evaluate the performance of orthokeratology(ortho-k)lens reordering using software-designed system,so as to determine the feasibility of ortho-k lens reordering without discontinuing lens wear.Methods:Thi...Objective:To evaluate the performance of orthokeratology(ortho-k)lens reordering using software-designed system,so as to determine the feasibility of ortho-k lens reordering without discontinuing lens wear.Methods:This study is a retrospective analysis of data of ortho-k lens wearers who had a history of short-term discontinuation of lens wear.A total of 94 individuals aged over 8 years with spherical equivalent refraction ranging from-0.50 to-6.50 diopters were included.The corneal topography data at baseline(before ortho-k)and after lens wear discontinuation(cessation of ortho-k treatment)were imported separately into the lens-design software,along with corresponding refraction data.Subsequently,corneal and lens parameters were generated and compared.Intraclass correlation coefficients(ICC)were calculated,and Bland and Altman analyses were conducted.Results:All 94 children were involved in the retrospective analysis.Compared with baseline data,there was a high level of consistency between Rwo(without discontinuation)and Rwith(with discontinuation),with an ICC of 0.96(P<0.001).Furthermore,the comparison of lens parameters generated by the Easyfit software between baseline and after short-term discontinuation showed a high degree of consistency,with all of the ICC values exceeding 0.90.Similar results were obtained using the WAVE software,as both ICC values and Bland-Altman plots demonstrated a high level of consistency in lens parameters between two conditions(nearly all data points fell within the 95%LoAs).Conclusions:It is feasible to directly reorder new ortho-k lenses using software fitting approaches.However,further investigations are necessary to validate their practicability in a clinical setting.展开更多
This study investigates surface erosion wear caused by collision and friction between propellers and sand particles during the flight of propeller transport aircraft in harsh environments like deserts and plateaus,whi...This study investigates surface erosion wear caused by collision and friction between propellers and sand particles during the flight of propeller transport aircraft in harsh environments like deserts and plateaus,which are characterized by strong sand and wind conditions.Firstly,the erosion behavior of individual propeller blades is analyzed under various sand particle parameters using the commercial software FLUENT.Subsequently,dynamic simulations of the entire blade are conducted by the sliding mesh method to examine erosion patterns under different operational conditions,including rotation speed and climb angle.Finally,the impact of erosion on the aerodynamic characteristics of the propeller is obtained based on simulation results.This study delves into the erosion patterns observed in large aircraft propellers operating within sandy and dusty environments,as well as the consequential impact of propeller surface wear on aerodynamic performance.By elucidating these phenomena,this research provides valuable insights that can inform future endeavors aimed at optimizing propeller design.展开更多
Deep hole gun drilling is in a closed and semi-closed state,and the machining process is complex.The unstable drilling force,severe tool wear,and poor processing quality have always been difficulties in deep hole gun ...Deep hole gun drilling is in a closed and semi-closed state,and the machining process is complex.The unstable drilling force,severe tool wear,and poor processing quality have always been difficulties in deep hole gun drilling.304 stainless steel has good corrosion and heat resistance,and is widely used in various industries.However,high hardness,poor plasticity,and characteristics of sticking knives have always restricted its development in engineering applications.Therefore,this paper uses 304 stainless steel as the research object and performs process parameter optimization and tool wear experiments.Firstly,based on the optimization experiment of process parameters,the influence of cutting speed and feed rate on drlling force and hole wall roughness is analyzed.The process parameters of the subsequent experiment are optimized as follows:spindle speed is 1270r/mm,feed rate is 0.02 mm/r,and oil pressure is 3 MPa.Secondly,based on the tool wear experiment,the variation law of tool wear and tool wear form is studied.With the help of scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS),the tool wear mechanism of deep hole gun drilling 304 stainless steel is expounded.Finally,the influence of tool wearon the processing quality isrevealed,and the suggestion of tool regrinding is put forward.展开更多
This paper focuses on the key issues of tool wear condition monitoring in the field of machining,and deeply discusses the application of digital twin technology in this aspect.This paper expounds the principle and arc...This paper focuses on the key issues of tool wear condition monitoring in the field of machining,and deeply discusses the application of digital twin technology in this aspect.This paper expounds the principle and architecture of digital twin technology,analyzes its specific methods in tool wear data acquisition,modeling,simulation,and real-time monitoring,and shows the significant advantages of this technology in improving the accuracy of tool wear monitoring and realizing predictive maintenance.At the same time,the challenges faced by digital twin technology in tool wear condition monitoring are discussed,and the corresponding development direction is put forward,aiming to provide theoretical reference and practical guidance for optimizing tool management by digital twin technology in the machining industry.展开更多
Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and...Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.展开更多
Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by ad...Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.展开更多
Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect ...Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.展开更多
The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to ...The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.展开更多
文摘本文探讨Art to Wear即“可以穿的艺术”,其中大部分作品为服装,少量作品是帽子和首饰。通过分析Art to Wear代表艺术家,解读Art to Wear艺术作品,从而探讨美国20世纪60年代到80年代女性艺术家群体如何以艺术为媒介对自身经历进行叙述性表现。60年代末70年代初处于美国女性主义的第二次浪潮,众多美国名校的年轻白人女大学生,不断为女性的参政、就业、医疗、最低工资等争取更多的权利,而到了80年代遭到美国保守主义的强烈打击,追求自由平等的女性主义运动跌入低谷。第二次女性主义运动的跌宕正是Art to Wear艺术运动的发展时期,艺术学院在读青年女生们发起Art to Wear艺术运动,她们在保守主义与激进主义的影响下寻求精神、生活的平衡,极力反叛女性束身塑形来博得男性视觉愉悦、通过同性的嫉妒来肯定自身价值。她们对家庭、事业、社会地位开始深思,通过作品叙述对社会性别与身份认定的迷茫,表达保守与激进思想的内心纠结。
基金supported by the Guangxi Major Science and Technology Project(AB24010120)Young Talent Support Project of Guangzhou Association for Science and Technology(QT-2024-047)+3 种基金Key-Area Research and Development Program of Jiangxi Province(20243BBG71023)GDAS'Project of Science and Technology Development(2023GDASQNRC-0205 and 2024GDASZH-2024010102)Evaluation Project of Guangdong Provincial Key Laboratory(2023B1212060043)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001).
文摘The microstructural evolution,mechanical properties,and wear behavior of medium manganese steels(MMSs)with varying aluminum(Al)contents were investigated.It was observed that the microstructure of MMS transferred from a predominantly martensitic phase(in the Al-free state)to a ferrite/martensite or ferrite/austenite duplex structure with increasing Al content.The hardness of MMS decreased with Al addition,while the impact absorbed energy and yield strength were optimized in 2%Al-containing variant.Frictional wear tests demonstrated that 2 wt.%Al-MMS exhibited superior wear resistance due to the twinning-induced plasticity effect.Conversely,under impact abrasion wear conditions,the Al-free MMS displayed the lowest mass loss,attributing to high surface hardness and remarkable work hardening capacity.These findings indicates that Al content-tailored MMSs can be selectively applied in different wear environments,with 2 wt.%Al-MMS being optimal for static load conditions and the Al-free MMS for dynamic impact abrasion scenarios.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179,11875042,and 12150410309)the Natural Science Foundation of Shanghai(Grant No.21ZR1443900).
文摘The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus(SCN)integrates environmental signals to maintain complex and robust circadian rhythms.Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function.Synchrony involves coordinated neuronal firing for robust rhythms,while complexity reflects diverse activity patterns and interactions,indicating adaptability.Interestingly,the SCN retains circadian rhythms in vitro,demonstrating intrinsic rhythmicity.This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels,based on Bagrov et al.’s approach.By examining structural complexity and local complexities across scales,we aim to understand how tetrodotoxin,a neurotoxin that inhibits action potentials,affects SCN neurons.Our method captures critical scales in neuronal interactions that traditional methods may overlook.Validation with the Goodwin model confirms the reliability of our observations.By integrating experimental data with theoretical models,this study provides new insights into the effects of tetrodotoxin(TTX)on neuronal complexities,contributing to the understanding of circadian rhythms.
文摘Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.
基金National Natural Science Foundation of China(No.42301518)Hubei Key Laboratory of Regional Development and Environmental Response(No.2023(A)002)Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources(Ministry of Education)(No.TDSYS202304).
文摘Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.
基金supported by the National Natural Science Foundation of China Youth Science Foundation of China(Grant No.52308388)the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210).
文摘This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.
基金National Natural Science Foundation of China(U1804124)Key Scientific and Technological Project of Henan Province(202102210014)。
文摘The TZM alloys with different contents of ZrO_(2)were prepared by powder metallurgy and rolling,and the grain size,hardness,and abrasive wear resistance of TZM alloy were studied.The abrasive wear test of TZM alloy was conducted under the conditions of 10,15,and 20 N and abrasive particle sizes of 7,11,18,and 38μm.The results show that the added ZrO_(2)particles in TZM alloy are mainly distributed at the grain boundaries.The grains of TZM alloy containing 1.5wt%ZrO_(2)are significantly refined,and the hardness is increased by 16%.The wear test results show that TZM alloy containing 1.5wt%ZrO_(2)has the lowest mass loss rate and excellent wear resistance under all loads and abrasive sizes,and the wear performance is improved by 12%.The ZrO_(2)with high hardness becomes the main bearer of the load,and as the second-phase,it hinders the abrasive particles from entering the matrix and effectively resists the scratch of the abrasive particles,which is the main reason for the excellent wear resistance.
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
基金supported by Science and Technology Project of Guangzhou(2023A04J0297)Guangdong Basic and Applied Basic Research Foundation(2024A1515011622)+3 种基金National Natural Science Foundation of China(52301040)GDAS’Project of Science and Technology Development(2023GDASQNRC-0205 and 2022GDASZH-2022010107)Evaluation Project of Guangdong Provincial Key Laboratory(2023B1212060043)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001).
文摘The impact-abrasive wear behavior of high-C martensitic steel was investigated,taking into account varying carbon(C)contents and different tempering temperatures.The evaluation was done through comprehensive microstructural characterization,analysis of worn surface morphology,and measurement of key performance like impact toughness and surface hardening.The findings demonstrate that increasing C content and tempering temperature both has a positive effect on wear resistance,with C content exhibiting a more pronounced influence compared to the tempering temperature.The improved wear resistance of the steel with higher C content and tempering at a higher temperature can be attributed to its enhanced impact toughness.This increase in impact toughness is primarily a result of microstructural refinement and alterations in carbide morphology.Moreover,cyclic impact loading induces surface hardening due to dislocation strengthening within the martensite and the retained austenite,leading to an increase in surface hardness.The combination of surface hardening and excellent impact toughness synergistically contributes to the overall improved wear resistance observed in the experimental steel with higher C content after tempering at a higher temperature.Additionally,the dominant features observed on the worn surface are scratches and substrate delamination,indicative of a wear mechanism of the experimental steels characterized by micro-cutting/ploughing and fatigue wear.
文摘The construction projects’ dynamic and interconnected nature requires a comprehensive understanding of complexity during pre-construction. Traditional tools such as Gantt charts, CPM, and PERT often overlook uncertainties. This study identifies 20 complexity factors through expert interviews and literature, categorising them into six groups. The Analytical Hierarchy Process evaluated the significance of different factors, establishing their corresponding weights to enhance adaptive project scheduling. A system dynamics (SD) model is developed and tested to evaluate the dynamic behaviour of identified complexity factors. The model simulates the impact of complexity on total project duration (TPD), revealing significant deviations from initial deterministic estimates. Data collection and analysis for reliability tests, including normality and Cronbach alpha, to validate the model’s components and expert feedback. Sensitivity analysis confirmed a positive relationship between complexity and project duration, with higher complexity levels resulting in increased TPD. This relationship highlights the inadequacy of static planning approaches and underscores the importance of addressing complexity dynamically. The study provides a framework for enhancing planning systems through system dynamics and recommends expanding the model to ensure broader applicability in diverse construction projects.
基金financial support to the Application Foundation Frontier Project of the Major Program(JD)of Hubei Province(2023BAA019-4)the National Natural Science Foundation of China(U20A20279,12072245,52071238)+2 种基金the Science and Technology Program of Guangxi Province(AA22068080)the Key Research and Development Program of Hubei Province(2021BAA057)the Taishan Industry-Leading Talent Project Special Funding and Subject Innovation and Talent Introduction Program in Colleges and Universities(111 programs No.D18018)。
文摘Medium-manganese steel exhibits excellent strength and toughness,which are essential features in wear resistance applications.This study examines the impact of annealing temperature on impact abrasive wear.The results have indicated that samples annealed at different temperatures display plowing and fatigue wear effects.In the initial wear stage,the hightemperature annealed steel outperforms samples annealed at a lower temperature in terms of anti-plowing wear performance.This phenomenon is mainly due to the lower initial hardness of the samples subjected to low-temperature annealing.However,with prolonged wear time,the low-temperature annealed samples exhibit improved plowing wear performance,which is ascribed to a refinement of the lamellar microstructure and an increased residual austenite(RA),which enhances the work hardening effect,improving the hardness of the worn surface.The low-temperature annealed samples consistently delivered superior fatigue wear performance when compared with samples annealed at the higher temperature.The latter effect may be attributed to two factors.Firstly,the finer lamellar microstructure in the low-temperature annealed samples,coupled with greater RA,results in transformation-induced plasticity or twin-induced plasticity effect that hinders crack formation and propagation.Secondly,the low-temperature annealed samples form nanoscale equiaxed grains near the worn surface during the wear process.These grains can withstand crack driving forces in fine-grained regions,suppressing the formation and propagation of cracks.
基金supported by the National Natural Science Foundation of China(82371089).
文摘Objective:To evaluate the performance of orthokeratology(ortho-k)lens reordering using software-designed system,so as to determine the feasibility of ortho-k lens reordering without discontinuing lens wear.Methods:This study is a retrospective analysis of data of ortho-k lens wearers who had a history of short-term discontinuation of lens wear.A total of 94 individuals aged over 8 years with spherical equivalent refraction ranging from-0.50 to-6.50 diopters were included.The corneal topography data at baseline(before ortho-k)and after lens wear discontinuation(cessation of ortho-k treatment)were imported separately into the lens-design software,along with corresponding refraction data.Subsequently,corneal and lens parameters were generated and compared.Intraclass correlation coefficients(ICC)were calculated,and Bland and Altman analyses were conducted.Results:All 94 children were involved in the retrospective analysis.Compared with baseline data,there was a high level of consistency between Rwo(without discontinuation)and Rwith(with discontinuation),with an ICC of 0.96(P<0.001).Furthermore,the comparison of lens parameters generated by the Easyfit software between baseline and after short-term discontinuation showed a high degree of consistency,with all of the ICC values exceeding 0.90.Similar results were obtained using the WAVE software,as both ICC values and Bland-Altman plots demonstrated a high level of consistency in lens parameters between two conditions(nearly all data points fell within the 95%LoAs).Conclusions:It is feasible to directly reorder new ortho-k lenses using software fitting approaches.However,further investigations are necessary to validate their practicability in a clinical setting.
基金supported by the National Natural Science Foundation of China (Grant Nos.12172014,U2241264,and 12332001)the National Key Laboratory of Helicopter Aeromechanics Fund (Grant No.61422202206).
文摘This study investigates surface erosion wear caused by collision and friction between propellers and sand particles during the flight of propeller transport aircraft in harsh environments like deserts and plateaus,which are characterized by strong sand and wind conditions.Firstly,the erosion behavior of individual propeller blades is analyzed under various sand particle parameters using the commercial software FLUENT.Subsequently,dynamic simulations of the entire blade are conducted by the sliding mesh method to examine erosion patterns under different operational conditions,including rotation speed and climb angle.Finally,the impact of erosion on the aerodynamic characteristics of the propeller is obtained based on simulation results.This study delves into the erosion patterns observed in large aircraft propellers operating within sandy and dusty environments,as well as the consequential impact of propeller surface wear on aerodynamic performance.By elucidating these phenomena,this research provides valuable insights that can inform future endeavors aimed at optimizing propeller design.
基金supported by the Natural Science Research of Jiangsu Higher Education Institutions of China(No.20KJA460005)Jiangsu Postgraduate Innovation Program(No.SJCX24_2156)Yancheng Key Research&Development(Industrial Support)Program(No.BE2023028).
文摘Deep hole gun drilling is in a closed and semi-closed state,and the machining process is complex.The unstable drilling force,severe tool wear,and poor processing quality have always been difficulties in deep hole gun drilling.304 stainless steel has good corrosion and heat resistance,and is widely used in various industries.However,high hardness,poor plasticity,and characteristics of sticking knives have always restricted its development in engineering applications.Therefore,this paper uses 304 stainless steel as the research object and performs process parameter optimization and tool wear experiments.Firstly,based on the optimization experiment of process parameters,the influence of cutting speed and feed rate on drlling force and hole wall roughness is analyzed.The process parameters of the subsequent experiment are optimized as follows:spindle speed is 1270r/mm,feed rate is 0.02 mm/r,and oil pressure is 3 MPa.Secondly,based on the tool wear experiment,the variation law of tool wear and tool wear form is studied.With the help of scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS),the tool wear mechanism of deep hole gun drilling 304 stainless steel is expounded.Finally,the influence of tool wearon the processing quality isrevealed,and the suggestion of tool regrinding is put forward.
文摘This paper focuses on the key issues of tool wear condition monitoring in the field of machining,and deeply discusses the application of digital twin technology in this aspect.This paper expounds the principle and architecture of digital twin technology,analyzes its specific methods in tool wear data acquisition,modeling,simulation,and real-time monitoring,and shows the significant advantages of this technology in improving the accuracy of tool wear monitoring and realizing predictive maintenance.At the same time,the challenges faced by digital twin technology in tool wear condition monitoring are discussed,and the corresponding development direction is put forward,aiming to provide theoretical reference and practical guidance for optimizing tool management by digital twin technology in the machining industry.
基金supported by the National Natural Science Foundation of China(Grant Nos.52002344,U2034210,and 61960206010)the Development Project of State Key Laboratory of Rail Transit Vehicle System(Grant No.2022TPL_T09)。
文摘Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.
基金financially supported by the Scientific Research Project Coordinatorship (BAP) of Yildiz Technical University (YTU) (Project No: FYL-2021-3825)。
文摘Aluminum alloys are widely used in industry due to their light weight.These alloys are generally exposed to abrasive wear,which diminishes their effective lifespan.The wear resistance of these alloys is enhanced by adding various reinforcements,however,this enhancement comes at the cost of reduced fracture toughness.This paradox of increased wear resistance versus decreased fracture toughness in aluminum alloys can be resolved by using functionally graded materials (FGMs).This study focuses on the abrasive wear behavior of functional graded aluminum matrix composites reinforced with Al_(3)Ti particles.The wear properties of the composites were investigated by considering the characteristics of the composite such as matrix type and various composite zones,as well as the wear parameters such as abrasive particle diameter,load,sliding speed and distance.Taguchi method was used in the abrasive wear tests in order to get more reliable results in a timeefficient manner.Experiment recipes were created based on the L_(27)(3^(6)) orthogonal series.As a result of the study,it is observed that the wear resistance of the composites increases with an increase in Al_(3)Ti reinforcement content and hardness of the matrix.In addition,the size of abrasive particles and the applied load are significant factors affecting abrasive wear.
基金supported by the Xinjiang Tianchi Talent Introduction Plan (51052300585)the Fundamental Research Funds for Autonomous Region Universities (XJEDU2022P002)+1 种基金the Natural science foundation project of Xinjiang Uygur Autonomous Region (2023D01C192,2023D01C33)the Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region (2023D14001)。
文摘Ceramic materials with intricate structures can be efficiently fabricated using stereolithography(SLA)based 3D printing technology,offering advantages over traditional methods.Sintering temperature has primary effect on properties of ceramics.This study investigated the crucial sintering temperature for 3D printed ceramics to ensure the desired properties.The results indicate that all samples exhibit a consistent layered structure across the experimental sintering temperatures.When the sintering temperature is increased from 1,250℃ to 1,350℃,the grain's morphology changes from spherical to plate-like.Surface morphology analysis reveals a decrease in surface roughness at sintering temperatures above 1,350℃.Mechanical tests show improved flexural strength and stiffness as the sintering temperature rises.Friction and wear experiments demonstrate that as the sintering temperature increases from 1,450℃ to 1,550℃,the wear pattern on ceramic surfaces transitions from deep pits to shallow grooves.The increase in sintering temperature effectively enhances the wear resistance of 3D printed alumina ceramics.This improvement plays a significant role in expanding the application field of these ceramics,prolonging the lifespan of parts,reducing production costs,enhancing performance,and promoting environmental protection.In this study,ceramics achieve the highest strength and best wear resistance when sintered at 1,600℃,resulting in the best overall performance.
基金support of the“National R&D Project for Smart Construction Technology (Grant No.RS-2020-KA157074)”funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land,Infrastructure and Transport,and managed by the Korea Expressway Corporation.
文摘The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.