This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability ...Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d...This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.展开更多
Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly ...Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly optimized topologies.But the key problems arise:how to compress a network to best enhance its compactness,and what the compression limit of the network reflects?We abstract the topological compression of complex networks as a dynamic process of making them more compact and propose the local compression modulus that plays a key role in effective compression evolution of networks.Subsequently,we identify topological compressibility-a general property of complex networks that characterizes the extent to which a network can be compressed-and provide its approximate quantification.We anticipate that our findings and established theory will provide valuable insights into both dynamics and various applications of complex networks.展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in differen...Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns.展开更多
To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empiri...To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empirical studies of the gene ontology with various perspectives, this paper shows that the whole gene ontology displays the same topological features as complex networks including "small world" and "scale-free",while some sub-ontologies have the "scale-free" property but no "small world" effect.The potential important terms in an ontology are discovered by some famous complex network centralization methods.An evaluation method based on information retrieval in MEDLINE is designed to measure the effectiveness of the discovered important terms.According to the relevant literature of the gene ontology terms,the suitability of these centralization methods for ontology important concepts discovering is quantitatively evaluated.The experimental results indicate that the betweenness centrality is the most appropriate method among all the evaluated centralization measures.展开更多
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
Based on the theory of complex network and gray system, the sugesstion that there exist two types of gray nodes in complex networks, Gray Node I and Gray Node II, is concluded. The first one refers to the existent unk...Based on the theory of complex network and gray system, the sugesstion that there exist two types of gray nodes in complex networks, Gray Node I and Gray Node II, is concluded. The first one refers to the existent unknown gray nodes, and the second the evolution gray nodes. The relevant definitions are also given. Further- more, grayness degree in complex networks is described and divided into two forms--the relative grayness degree (RGD) and the absolute grayness degree (AGD), which are proved respectively.展开更多
The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (C...The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.展开更多
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr...Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
Accident causation analysis is of great importance for accident prevention.In order to improve the aviation safety,a new analysis method of aviation accident causation based on complex network theory is proposed in th...Accident causation analysis is of great importance for accident prevention.In order to improve the aviation safety,a new analysis method of aviation accident causation based on complex network theory is proposed in this paper.Through selecting 257 accident investigation reports,45 causative factors and nine accident types are obtained by the three-level coding process of the grounded theory,and the interaction of these factors is analyzed based on the“2-4”model.Accordingly,the aviation accident causation network is constructed based on complex network theory which has scale-free characteristics and small-world properties,the characteristics of causative factors are analyzed by the topology of the network,and the key causative factors of the accidents are identified by the technique for order of preference by similarity to ideal solution(TOPSIS)method.The comparison results show that the method proposed in this paper has the advantages of independent of expert experience,quantitative analysis of accident causative factors and statistical analysis of a lot of accident data,and it has better applicability and advancement.展开更多
To explore the structural characteristics and vulnerability of multimodal transport networks,this study identifies the structural characteristics of a multimodal transport network on the basis of the complex network t...To explore the structural characteristics and vulnerability of multimodal transport networks,this study identifies the structural characteristics of a multimodal transport network on the basis of the complex network theory.Key nodes are clarified from the analysis of the structural characteristics.The characteristic path length and percentage of the largest subgraph are applied to analyze the vulnerability of the multimodal transport network after random and intentional attacks on the nodes.The network of a multimodal transport company is taken as an example in the empirical analysis.Results show that with more than ten nodes under a random attack,the percentage of the largest subgraph is less than 20%,and the characteristic path length is less than 2.The same performance is observed for more than seven nodes under an intentional attack.The multimodal transport network is more vulnerable under an international attack against key nodes.The results of the topology and node failure under random or intentional attacks would support the management of the multimodal transport network.Suggestions for the emergency transportation organization of enterprises under attacks are proposed accordingly.These suggestions should help improve network invulnerability and recovery from node failure.展开更多
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. ...In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the "7.23" China-Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.展开更多
The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the...The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.展开更多
This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the contro...This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.展开更多
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ...Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.展开更多
Objective:To analyze the rule of acupoint combination of insomnia treated with modern acupuncturemoxibustion with complex network technology and further reveal the internal characteristics of acupoint combination.Meth...Objective:To analyze the rule of acupoint combination of insomnia treated with modern acupuncturemoxibustion with complex network technology and further reveal the internal characteristics of acupoint combination.Methods:Using computer retrieval,the relevant clinical trials of acupuncture and moxibustion in treatment of insomnia were searched from China National knowledge Infrastructure(CNKI),Wanfang Data Knowledge Service Platform(Wanfang),VIP Chinese Journal Service Platform(VIP) and Pubmed Database in recent 5 years.The articles were screened according to the inclusion and exclusion criteria,and then the database was set up and the acupoint prescriptions of acupuncture and moxibustion were extracted.Using Excel 2016 software,the data were processed and the frequency analysis was conducted.With SPSS Modeler 18.0,the association rules were analyzed.Using Gephi 0.9.2,the community analysis and complex network analysis were conducted.Results:Finally,766 articles were eligible and 1276 acupoint prescriptions were extracted with 186 acupoints involved.The acupoints with the highest frequency of use were Shénmén(神门 HT7),Bǎihuì(百会GV20) and Sānyīnjiāo(三阴交SP6).The meridians with the highest frequency were bladder meridian and the governor vessel.The acupoints located on the head and foot were mostly selected.The specific points involved were the crossing points,five-shu points and yuan-source points.The main core paired points referred to HT7 and SP6,HT7 and GV20 as well as HT7 and Nèiguān(内关PC6).The meridians with the highest confidence level appeared among heart meridian of hand-shaoyin,spleen meridian of foot-taiyin and kidney meridian of foot-shaoyin.The modular analysis of complex network obtained 4 core communities and topology analysis obtained 35 core points.The main prescription was composed of HT7,GV20,SP6,Sìshéncōng(四神聪EX-HN1),PC6,Tàixī(太溪KI3),Zúsānlǐ(足三里ST36),Tàichōng(太冲LR3),Anmián(安眠EX-HN18),Yìntáng(印堂EX-HN3),Zhàohǎi(照海KI6),Shēnmài(申脉BL62) and Fēngchí(风池 GB20).Conclusion:Acupuncture-moxibustion therapy focuses on regulating the mind/spirit of the heart and brain,as well as of five zang organs.The general treatment principles are regaining consciousness and opening the orifice,replenishing yin and reducing yang,nourishing the heart and tranquilizing.The supplementary points are mostly the combination of distal and nearby points and the combination of the acupoints located in the upper and the lower parts of the body.The back-shu points and the front-mu points are generally used,while the crossing point as the specific point is especially applied.All of these summaries provide the reference and guidance for clinical application and scientific research.展开更多
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(Grant No.12031002)。
文摘Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
基金Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011)the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391)+1 种基金the National Natural Science Foundation of China (Grant No. 61573148)the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001)。
文摘This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
基金supported inpart by the National Natural Science Foundation of China(Grant No. 12371088)the Innovative Research Group Project of Natural Science Foundation of Hunan Provinceof China (Grant No. 2024JJ1008)in part by the Australian Research Council (ARC) through the Discovery Projects scheme (Grant No. DP220100580)。
文摘Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly optimized topologies.But the key problems arise:how to compress a network to best enhance its compactness,and what the compression limit of the network reflects?We abstract the topological compression of complex networks as a dynamic process of making them more compact and propose the local compression modulus that plays a key role in effective compression evolution of networks.Subsequently,we identify topological compressibility-a general property of complex networks that characterizes the extent to which a network can be compressed-and provide its approximate quantification.We anticipate that our findings and established theory will provide valuable insights into both dynamics and various applications of complex networks.
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFE0136000 and 2024YFC3013100)the Joint Meteorological Fund(Grant No.U2342211)+1 种基金the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSZ004)the National Meteorological Information Center(Grant No.NMICJY202301)。
文摘Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns.
基金The National Basic Research Program of China (973Program) (No.2005CB321802)Program for New Century Excellent Talents in University (No.NCET-06-0926)the National Natural Science Foundation of China (No.60873097,90612009)
文摘To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empirical studies of the gene ontology with various perspectives, this paper shows that the whole gene ontology displays the same topological features as complex networks including "small world" and "scale-free",while some sub-ontologies have the "scale-free" property but no "small world" effect.The potential important terms in an ontology are discovered by some famous complex network centralization methods.An evaluation method based on information retrieval in MEDLINE is designed to measure the effectiveness of the discovered important terms.According to the relevant literature of the gene ontology terms,the suitability of these centralization methods for ontology important concepts discovering is quantitatively evaluated.The experimental results indicate that the betweenness centrality is the most appropriate method among all the evaluated centralization measures.
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.
基金Supported by the National Natural Science Foundation of China(71110307023)~~
文摘Based on the theory of complex network and gray system, the sugesstion that there exist two types of gray nodes in complex networks, Gray Node I and Gray Node II, is concluded. The first one refers to the existent unknown gray nodes, and the second the evolution gray nodes. The relevant definitions are also given. Further- more, grayness degree in complex networks is described and divided into two forms--the relative grayness degree (RGD) and the absolute grayness degree (AGD), which are proved respectively.
基金supported by the National Basic Research Program of China (Grant No.2011CB707004)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.60921001)+1 种基金the National Key Technologies R & D Program of China (Grant No.2011BAH24B02)the Fundamental Research Funds for the Central Universities
文摘The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.
基金supported by the National Natural Science Foundation of China(61174022)the National High Technology Research and Development Program of China(863 Program)(2013AA013801)+2 种基金the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02)the General Research Program of the Science Supported by Sichuan Provincial Department of Education(14ZB0322)the Fundamental Research Funds for the Central Universities(XDJK2014D008)
文摘Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.
基金supported by the Civil Aviation Joint Fund of National Natural Science Foundation of China(No.U1533112)。
文摘Accident causation analysis is of great importance for accident prevention.In order to improve the aviation safety,a new analysis method of aviation accident causation based on complex network theory is proposed in this paper.Through selecting 257 accident investigation reports,45 causative factors and nine accident types are obtained by the three-level coding process of the grounded theory,and the interaction of these factors is analyzed based on the“2-4”model.Accordingly,the aviation accident causation network is constructed based on complex network theory which has scale-free characteristics and small-world properties,the characteristics of causative factors are analyzed by the topology of the network,and the key causative factors of the accidents are identified by the technique for order of preference by similarity to ideal solution(TOPSIS)method.The comparison results show that the method proposed in this paper has the advantages of independent of expert experience,quantitative analysis of accident causative factors and statistical analysis of a lot of accident data,and it has better applicability and advancement.
基金The Science and Technology Demonstration Project of Multimodal Freight Transport in Jiangsu Province(No.2018Y02).
文摘To explore the structural characteristics and vulnerability of multimodal transport networks,this study identifies the structural characteristics of a multimodal transport network on the basis of the complex network theory.Key nodes are clarified from the analysis of the structural characteristics.The characteristic path length and percentage of the largest subgraph are applied to analyze the vulnerability of the multimodal transport network after random and intentional attacks on the nodes.The network of a multimodal transport company is taken as an example in the empirical analysis.Results show that with more than ten nodes under a random attack,the percentage of the largest subgraph is less than 20%,and the characteristic path length is less than 2.The same performance is observed for more than seven nodes under an intentional attack.The multimodal transport network is more vulnerable under an international attack against key nodes.The results of the topology and node failure under random or intentional attacks would support the management of the multimodal transport network.Suggestions for the emergency transportation organization of enterprises under attacks are proposed accordingly.These suggestions should help improve network invulnerability and recovery from node failure.
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2011AA110502)the National Natural Science Foundation of China (Grant No.71271022)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,China (Grant No.RCS2012ZQ001)
文摘In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the "7.23" China-Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
基金supported by National Natural Science Foundation of China(No.61273008)Science Research Project of Liaoning Provicial Education Department(No.L2012208)Science Foundation of Ministry of Housing and Urban-Rural Development(No.2013-K5-2)
文摘The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.
基金supported by the National Natural Science Foundation of China (Grant No 10647001)the Guangxi Natural Science Foundation (Grant No 0728042)+1 种基金the Program for Excellent Talents in Guangxi Higher Education Institutions (Grant No RC2007006)the NSFC-HK Joint Research Scheme (Grant No N-CityU107/07)
文摘This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328903)the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology,China(Grant No.2011BAJ03B13-2)+1 种基金the National Natural Science Foundation of China(Grant No.61473050)the Key Science and Technology Program of Chongqing,China(Grant No.cstc2012gg-yyjs40008)
文摘Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
基金Supported by National Natural Science Foundation of China:81473773.
文摘Objective:To analyze the rule of acupoint combination of insomnia treated with modern acupuncturemoxibustion with complex network technology and further reveal the internal characteristics of acupoint combination.Methods:Using computer retrieval,the relevant clinical trials of acupuncture and moxibustion in treatment of insomnia were searched from China National knowledge Infrastructure(CNKI),Wanfang Data Knowledge Service Platform(Wanfang),VIP Chinese Journal Service Platform(VIP) and Pubmed Database in recent 5 years.The articles were screened according to the inclusion and exclusion criteria,and then the database was set up and the acupoint prescriptions of acupuncture and moxibustion were extracted.Using Excel 2016 software,the data were processed and the frequency analysis was conducted.With SPSS Modeler 18.0,the association rules were analyzed.Using Gephi 0.9.2,the community analysis and complex network analysis were conducted.Results:Finally,766 articles were eligible and 1276 acupoint prescriptions were extracted with 186 acupoints involved.The acupoints with the highest frequency of use were Shénmén(神门 HT7),Bǎihuì(百会GV20) and Sānyīnjiāo(三阴交SP6).The meridians with the highest frequency were bladder meridian and the governor vessel.The acupoints located on the head and foot were mostly selected.The specific points involved were the crossing points,five-shu points and yuan-source points.The main core paired points referred to HT7 and SP6,HT7 and GV20 as well as HT7 and Nèiguān(内关PC6).The meridians with the highest confidence level appeared among heart meridian of hand-shaoyin,spleen meridian of foot-taiyin and kidney meridian of foot-shaoyin.The modular analysis of complex network obtained 4 core communities and topology analysis obtained 35 core points.The main prescription was composed of HT7,GV20,SP6,Sìshéncōng(四神聪EX-HN1),PC6,Tàixī(太溪KI3),Zúsānlǐ(足三里ST36),Tàichōng(太冲LR3),Anmián(安眠EX-HN18),Yìntáng(印堂EX-HN3),Zhàohǎi(照海KI6),Shēnmài(申脉BL62) and Fēngchí(风池 GB20).Conclusion:Acupuncture-moxibustion therapy focuses on regulating the mind/spirit of the heart and brain,as well as of five zang organs.The general treatment principles are regaining consciousness and opening the orifice,replenishing yin and reducing yang,nourishing the heart and tranquilizing.The supplementary points are mostly the combination of distal and nearby points and the combination of the acupoints located in the upper and the lower parts of the body.The back-shu points and the front-mu points are generally used,while the crossing point as the specific point is especially applied.All of these summaries provide the reference and guidance for clinical application and scientific research.