A new Lie algebra G of the Lie algebra sl(2) is constructed with complex entries whose structure constants are real and imaginary numbers. A loop algebra G corresponding to the Lie algebra G is constructed, for whic...A new Lie algebra G of the Lie algebra sl(2) is constructed with complex entries whose structure constants are real and imaginary numbers. A loop algebra G corresponding to the Lie algebra G is constructed, for which it is devoted to generating a soliton hierarchy of evolution equations under the framework of generalized zero curvature equation which is derived from the compatibility of the isospectral problems expressed by Hirota operators. Finally, we decompose the Lie algebra G to obtain the subalgebras G1 and G2. Using the G2 and its one type of loop algebra G2, a Liouville integrable soliton hierarchy is obtained, furthermore, we obtain its bi-Hamiltonian structure by employing the quadratic-form identity.展开更多
Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent...Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.展开更多
We extend the Poincaré group to the complex Minkowski space-time. Special attention is paid to the corresponding algebra that we achieve through matrices as well as differential operators. We also point out the g...We extend the Poincaré group to the complex Minkowski space-time. Special attention is paid to the corresponding algebra that we achieve through matrices as well as differential operators. We also point out the generalizations of the two Casimir operators.展开更多
For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and secondary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl group acts on the sets of all...For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and secondary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl group acts on the sets of all their Diophantine solutions. This provides two realizations (primary and secondary) of the Weyl group on the sets of Diophantine solutions of the equations of the ellipsoids. The primary realization of the Weyl group suggests an order on the Weyl group, which is stronger than the Chevalley-Bruhat ordering of the Weyl group, and which provides an algorithm for the Chevalley-Bruhat ordering. The secondary realization of the Weyl group provides an algorithm for constructing all reduced expressions for any of its elements, and thus provides another way for the Chevalley-Bruhat ordering of the Weyl group.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.10471139
文摘A new Lie algebra G of the Lie algebra sl(2) is constructed with complex entries whose structure constants are real and imaginary numbers. A loop algebra G corresponding to the Lie algebra G is constructed, for which it is devoted to generating a soliton hierarchy of evolution equations under the framework of generalized zero curvature equation which is derived from the compatibility of the isospectral problems expressed by Hirota operators. Finally, we decompose the Lie algebra G to obtain the subalgebras G1 and G2. Using the G2 and its one type of loop algebra G2, a Liouville integrable soliton hierarchy is obtained, furthermore, we obtain its bi-Hamiltonian structure by employing the quadratic-form identity.
文摘Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.
文摘We extend the Poincaré group to the complex Minkowski space-time. Special attention is paid to the corresponding algebra that we achieve through matrices as well as differential operators. We also point out the generalizations of the two Casimir operators.
文摘For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and secondary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl group acts on the sets of all their Diophantine solutions. This provides two realizations (primary and secondary) of the Weyl group on the sets of Diophantine solutions of the equations of the ellipsoids. The primary realization of the Weyl group suggests an order on the Weyl group, which is stronger than the Chevalley-Bruhat ordering of the Weyl group, and which provides an algorithm for the Chevalley-Bruhat ordering. The secondary realization of the Weyl group provides an algorithm for constructing all reduced expressions for any of its elements, and thus provides another way for the Chevalley-Bruhat ordering of the Weyl group.