Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images ...Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.展开更多
A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessme...This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity.To enable more accurate predictions of the optimal wind-solar ratio,a comprehensive complementarity rate is proposed,which allows for the optimization of wind-solar capacity based on this measure.Initially,the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power,enabling the calculation of the comprehensive complementarity rate.Following this,a joint planning model is developed to enhance the system’s economy and reliability.The goal is to minimize total costs,load deficit rates,and curtailment rates by applying an ImprovedMulti-Objective Particle SwarmOptimization algorithm(IMOPSO).Results show that when the proportion of wind power reaches 70%,the comprehensive complementarity rate is optimized.This optimization leads to a 14.83%reduction in total costs and a 9.27%decrease in curtailment rates.Compared to existing studies,this paper offers a multidimensional analysis of the relationship between the comprehensive complementarity rate and the optimal wind-solar ratio,thereby improving predictive accuracy and providing a valuable reference for research on the correlation between wind and solar power.展开更多
In this paper,a fu-Newton step interior-point algorithm is proposed for solving P_(*)(k)-linear complementarity problem based on a new search direction,which is an extension of Grimes'algorithm.It is proved that t...In this paper,a fu-Newton step interior-point algorithm is proposed for solving P_(*)(k)-linear complementarity problem based on a new search direction,which is an extension of Grimes'algorithm.It is proved that the number of iterations of the algorithm is O(n^(1/2)(1+4κ)logn/ε),which matches the best known iteration bound of the interior-point method for P_(*)(k)-linear complementarity problem.Some numerical results have proved the feasibility and efficiency of the proposed algorithm.展开更多
We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Eu...We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.展开更多
This letter to the editor presents some notes on energetic complementarity and a growing understanding of its role as a planning tool. This letter looks at the fact that an increasing number of works in recent years o...This letter to the editor presents some notes on energetic complementarity and a growing understanding of its role as a planning tool. This letter looks at the fact that an increasing number of works in recent years on this subject has promoted an increase in its level of importance in the design and operation of energy systems. The main change is the consideration of complementarity no longer as a consequence but as a design parameter. The continental dimension of Brazil, for example, should make it obvious that complementarities should be sought among the various energy resources available.展开更多
Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a...Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.展开更多
By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by...By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.展开更多
Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementa...Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementarity" feature, viz. the hydrocarbon resources configuration and plane distribution of the structural reservoir and lithostratigraphic reservoir have the "complementarity". This distribution feature is controlled by many factors such as the macroscopical geological setting, reservoir-forming condition, and the reservoir-forming mechanism of structural reservoir and lithostratigraphic reservoir. More research shows that the "complementarity" of hydrocarbon distribution is prevalent in every kind of continental basin. This "rule" helps to establish a new exploration theory, a scientific exploration program, and make proper exploration deployments in hydrocarbon exploration. Therefore, it is significant for the exploration work in continental petroliferous basins of China.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young...A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.展开更多
Development of fine roots and formation of symbiosis with arbuscular mycorrhizal(AM) fungi represent two strategies for plants to acquire nutrient and water from soil. Here, we elucidated how fine root development and...Development of fine roots and formation of symbiosis with arbuscular mycorrhizal(AM) fungi represent two strategies for plants to acquire nutrient and water from soil. Here, we elucidated how fine root development and symbolized mycorrhizal fungi with Stipa purpurea responded to the precipitation change in Tibetan alpine steppe ecosystem across a precipitation gradient from 50 mm to 400 mm. As precipitation increased, the proportion of thinner fine roots(diameter < 0.4 mm) in total roots increased significantly; while the mycorrhizal colonization percentage, either associated with thinner or thicker roots, decreased. This phenomenon indicated that fine root development and symbolized mycorrhizal fungi are likely alternative, and plant preferred to develop fine root rather than build a symbiotic relationship with mycorrhizal fungi in more benign niches with higher precipitation. Also, root diameter was negatively correlated with specific root length(SRL), but positively correlated with AM fungal colonization percentage, indicating thicker-root species rely more on mycorrhizal fungi in alpine steppe. The complementarity between fine root and mycorrhizal fungi of S. purpurea is mediated by precipitation in Tibetan alpine steppe.展开更多
If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of s...If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.展开更多
The complementarity of energy resources used in hybrid power generation can result in optimization of power capacity and reservation capabilities. This article is dedicated to the study of hybrid hydro PV systems. The...The complementarity of energy resources used in hybrid power generation can result in optimization of power capacity and reservation capabilities. This article is dedicated to the study of hybrid hydro PV systems. The goal is to establish the relationship between system performance and complementarity of energy resources. The study was carried out with computer simulations based on a method that uses ideal functions developed to describe the energy resources and determines a limit of performance. The results confirm expectations that performance, as measured by the total time of failure to meet demand, will be better as energy resources are complementary. Charts relating energy complementarity with failures are presented. The subsequent research work shall proceed to at least two different phases. In the first one, the method exposed in the present work shall be applied to real data and compared to the operation of existing hybrid plants. In the second phase, results shall be confronted with design parameters of hydro PV plants based on complementary resources. A next stage would be the enlargement of the method applied in this work for systems based on other energy resources, such as wind energy and ocean wave energy.展开更多
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over...This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.展开更多
We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity proble...The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.展开更多
In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required...In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration, thus avoiding the need for solving a quadratic subproblem with a trust region bound. Under some conditions, it is proven that this algorithm is globally and locally superlinear convergent. The limited numerical examples show its efficiency.展开更多
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and c...Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.展开更多
基金supports in part by the Natural Science Foundation of China(NSFC)under contract No.62171253the Young Elite Scientists Sponsorship Program by CAST under program No.2022QNRC001,as well as the Fundamental Research Funds for the Central Universities.
文摘Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金This work was supported by Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity.To enable more accurate predictions of the optimal wind-solar ratio,a comprehensive complementarity rate is proposed,which allows for the optimization of wind-solar capacity based on this measure.Initially,the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power,enabling the calculation of the comprehensive complementarity rate.Following this,a joint planning model is developed to enhance the system’s economy and reliability.The goal is to minimize total costs,load deficit rates,and curtailment rates by applying an ImprovedMulti-Objective Particle SwarmOptimization algorithm(IMOPSO).Results show that when the proportion of wind power reaches 70%,the comprehensive complementarity rate is optimized.This optimization leads to a 14.83%reduction in total costs and a 9.27%decrease in curtailment rates.Compared to existing studies,this paper offers a multidimensional analysis of the relationship between the comprehensive complementarity rate and the optimal wind-solar ratio,thereby improving predictive accuracy and providing a valuable reference for research on the correlation between wind and solar power.
基金Supported by the Optimization Theory and Algorithm Research Team(23kytdzd004)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province of China(YQYB2023090)the University Science Research Project of Anhui Province(2024AH050631)。
文摘In this paper,a fu-Newton step interior-point algorithm is proposed for solving P_(*)(k)-linear complementarity problem based on a new search direction,which is an extension of Grimes'algorithm.It is proved that the number of iterations of the algorithm is O(n^(1/2)(1+4κ)logn/ε),which matches the best known iteration bound of the interior-point method for P_(*)(k)-linear complementarity problem.Some numerical results have proved the feasibility and efficiency of the proposed algorithm.
基金The Specialized Research Fund(20132121110009)for the Doctoral Program of Higher Education
文摘We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.
文摘This letter to the editor presents some notes on energetic complementarity and a growing understanding of its role as a planning tool. This letter looks at the fact that an increasing number of works in recent years on this subject has promoted an increase in its level of importance in the design and operation of energy systems. The main change is the consideration of complementarity no longer as a consequence but as a design parameter. The continental dimension of Brazil, for example, should make it obvious that complementarities should be sought among the various energy resources available.
基金supported by the National Natural Science Foundation of China(No.10861005)the Natural Science Foundation of Guangxi Province (No.0728206)the Innovation Project of Guangxi Graduate Education(No. 2009105950701M29).
文摘Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.
基金Supported by China Postdoctoral Science Foundation(No.20060390660)Science and Technology Development Plan of Tianjin(No.06YFGZGX05600)+1 种基金Scientific Research Foundation of Liu Hui Center for Applied MathematicsNankai University-Tianjin University.
文摘By using a smoothing function,the P nonlinear complementarity problem(P NCP)can be reformulated as a parameterized smooth equation.A Newton method is proposed to solve this equation.The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P NCP has a nonempty solution set.This assumption is weaker than the ones used in most existing smoothing algorithms.In particular,the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P NCP without any additional assumption.
文摘Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementarity" feature, viz. the hydrocarbon resources configuration and plane distribution of the structural reservoir and lithostratigraphic reservoir have the "complementarity". This distribution feature is controlled by many factors such as the macroscopical geological setting, reservoir-forming condition, and the reservoir-forming mechanism of structural reservoir and lithostratigraphic reservoir. More research shows that the "complementarity" of hydrocarbon distribution is prevalent in every kind of continental basin. This "rule" helps to establish a new exploration theory, a scientific exploration program, and make proper exploration deployments in hydrocarbon exploration. Therefore, it is significant for the exploration work in continental petroliferous basins of China.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of ChinaChinese Academy of Sciences
文摘A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
基金funded by the The National Key Research and Development Program of China (2016YFC0501802)the Key Projects in the National Basic Research Programs (2013CB956000)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB15010201) of China
文摘Development of fine roots and formation of symbiosis with arbuscular mycorrhizal(AM) fungi represent two strategies for plants to acquire nutrient and water from soil. Here, we elucidated how fine root development and symbolized mycorrhizal fungi with Stipa purpurea responded to the precipitation change in Tibetan alpine steppe ecosystem across a precipitation gradient from 50 mm to 400 mm. As precipitation increased, the proportion of thinner fine roots(diameter < 0.4 mm) in total roots increased significantly; while the mycorrhizal colonization percentage, either associated with thinner or thicker roots, decreased. This phenomenon indicated that fine root development and symbolized mycorrhizal fungi are likely alternative, and plant preferred to develop fine root rather than build a symbiotic relationship with mycorrhizal fungi in more benign niches with higher precipitation. Also, root diameter was negatively correlated with specific root length(SRL), but positively correlated with AM fungal colonization percentage, indicating thicker-root species rely more on mycorrhizal fungi in alpine steppe. The complementarity between fine root and mycorrhizal fungi of S. purpurea is mediated by precipitation in Tibetan alpine steppe.
文摘If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.
文摘The complementarity of energy resources used in hybrid power generation can result in optimization of power capacity and reservation capabilities. This article is dedicated to the study of hybrid hydro PV systems. The goal is to establish the relationship between system performance and complementarity of energy resources. The study was carried out with computer simulations based on a method that uses ideal functions developed to describe the energy resources and determines a limit of performance. The results confirm expectations that performance, as measured by the total time of failure to meet demand, will be better as energy resources are complementary. Charts relating energy complementarity with failures are presented. The subsequent research work shall proceed to at least two different phases. In the first one, the method exposed in the present work shall be applied to real data and compared to the operation of existing hybrid plants. In the second phase, results shall be confronted with design parameters of hydro PV plants based on complementary resources. A next stage would be the enlargement of the method applied in this work for systems based on other energy resources, such as wind energy and ocean wave energy.
基金supported by National Natural Science Foundation of China (No. 10771120)
文摘This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.
基金Supported by the National Natural Science Foundation of China (No. 202001036)
文摘We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
基金Supported by the Funds of Ministry of Education of China for PhD (20020141013)the NNSF of China (10471015).
文摘The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.
基金Supported by the Natural Science Foundation of Hainan Province(80552)
文摘In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration, thus avoiding the need for solving a quadratic subproblem with a trust region bound. Under some conditions, it is proven that this algorithm is globally and locally superlinear convergent. The limited numerical examples show its efficiency.
基金supported by the National Natural Science Foundation of China (Grants 11232003, 91315302, 11502035)the Open Research Foundation (Grant GZ1404) of State Key Laboratory of Structural Analysis for Industrial Equipment at Dalian University of Technology
文摘Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.