Existing research on the competitive failure relationship,failure mechanism,and influencing factors of bolt loosening and fatigue under different preloads is insufficient.This study analyzes the competitive failure re...Existing research on the competitive failure relationship,failure mechanism,and influencing factors of bolt loosening and fatigue under different preloads is insufficient.This study analyzes the competitive failure relationship between bolt loosening and fatigue under composite excitation through competitive failure tests of bolt loosening and fatigue under different preloads.The results indicated that the failure mode of the bolt is only related to the load ratio(R)and is unrelated to the initial preload and excitation amplitude,which only determine the failure life of the bolt.The small axial loads of composite excitation can restrain bolt failure,and the significant degree of this restraining effect is differ-ent for different preloads.Subsequently,a fracture analysis of the bolt was performed to verify the competitive failure relationship of the bolt from a microscopic perspective,and the competitive failure mechanism of the bolt was deter-mined.Based on the findings,we propose a calculation equation for the optimal preload of 8.8 grade high-strength bolts that can serve as a reference for engineering applications.展开更多
In this study,the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation.Based on the competitive failure mechanism,the mode predict...In this study,the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation.Based on the competitive failure mechanism,the mode prediction model and“load ratio-life prediction curve”(ξ-N curve)of the bolt competitive failure are established.Given the poor correlation of theξ-N curve,an evaluation model of the bolt competitive failure life is proposed based on Miner’s linear damage accumulation theory.Based on the force analysis of the thread surface and simulation of the bolt connection under composite excitation,a theoretical equation of the bolt competitive failure life is established to validate the model for evaluating the bolt competitive failure life.The results reveal that the proposed model can accurately predict the competitive failure life of bolts under composite excitation,and thereby,it can provide guidance to engineering applications.展开更多
The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR...The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.展开更多
Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex.The dependency of them called dependent competing failure process(DCFP),has bee...Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex.The dependency of them called dependent competing failure process(DCFP),has been widely studied.Electronic system may experience mutual effects of degradation and shocks,they are considered to be interdependent.Both the degradation and the shock processes will decrease the limit of system and cause cumulative effect.Finally,the competition of hard and soft failure will cause the system failure.Based on the failure mechanism accumulation theory,this paper constructs the shock-degradation acceleration and the threshold descent model,and a system reliability model established by using these two models.The mutually DCFP effect of electronic system interaction has been decomposed into physical correlation of failure,including acceleration,accumulation and competition.As a case,a reliability of electronic system in aeronautical system has been analyzed with the proposed method.The method proposed is based on failure physical evaluation,and could provide important reference for quantitative evaluation and design improvement of the newly designed system in case of data deficiency.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675446)Independent Subject of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
文摘Existing research on the competitive failure relationship,failure mechanism,and influencing factors of bolt loosening and fatigue under different preloads is insufficient.This study analyzes the competitive failure relationship between bolt loosening and fatigue under composite excitation through competitive failure tests of bolt loosening and fatigue under different preloads.The results indicated that the failure mode of the bolt is only related to the load ratio(R)and is unrelated to the initial preload and excitation amplitude,which only determine the failure life of the bolt.The small axial loads of composite excitation can restrain bolt failure,and the significant degree of this restraining effect is differ-ent for different preloads.Subsequently,a fracture analysis of the bolt was performed to verify the competitive failure relationship of the bolt from a microscopic perspective,and the competitive failure mechanism of the bolt was deter-mined.Based on the findings,we propose a calculation equation for the optimal preload of 8.8 grade high-strength bolts that can serve as a reference for engineering applications.
基金Supported by National Natural Science Foundation of China(Grant No.52175123)the Independent Subject of State Key Laboratory of Traction Power(Grant No.2022TPL_T03).
文摘In this study,the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation.Based on the competitive failure mechanism,the mode prediction model and“load ratio-life prediction curve”(ξ-N curve)of the bolt competitive failure are established.Given the poor correlation of theξ-N curve,an evaluation model of the bolt competitive failure life is proposed based on Miner’s linear damage accumulation theory.Based on the force analysis of the thread surface and simulation of the bolt connection under composite excitation,a theoretical equation of the bolt competitive failure life is established to validate the model for evaluating the bolt competitive failure life.The results reveal that the proposed model can accurately predict the competitive failure life of bolts under composite excitation,and thereby,it can provide guidance to engineering applications.
基金supported by the National Defense Foundation of China(71601183)
文摘The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.
基金supported by the National Natural Science Foundation of China(61503014,62073009)。
文摘Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex.The dependency of them called dependent competing failure process(DCFP),has been widely studied.Electronic system may experience mutual effects of degradation and shocks,they are considered to be interdependent.Both the degradation and the shock processes will decrease the limit of system and cause cumulative effect.Finally,the competition of hard and soft failure will cause the system failure.Based on the failure mechanism accumulation theory,this paper constructs the shock-degradation acceleration and the threshold descent model,and a system reliability model established by using these two models.The mutually DCFP effect of electronic system interaction has been decomposed into physical correlation of failure,including acceleration,accumulation and competition.As a case,a reliability of electronic system in aeronautical system has been analyzed with the proposed method.The method proposed is based on failure physical evaluation,and could provide important reference for quantitative evaluation and design improvement of the newly designed system in case of data deficiency.