期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
1
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model competitive multi-objective particle swarm optimization algorithm (cmopso) multi-objective optimization
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
2
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:12
3
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
4
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
5
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm algorithm CHAOTIC SEQUENCES SELF-ADAPTIVE STRATEGY multi-objective optimization
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
6
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm optimization algorithm Double POPULATIONS multi-objective Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms 被引量:7
7
作者 JoséD. MARTíNEZ-MORALES Elvia R. PALACIOS-HERNáNDEZ Gerardo A. VELáZQUEZ-CARRILLO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期657-670,共14页
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S... In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively. 展开更多
关键词 Engine calibration multi-objective optimization Neural networks Multiple objective particle swarm optimization(MOPSO) Nondominated sorting genetic algorithm II (NSGA-II)
原文传递
Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization 被引量:2
8
作者 Haitao Yue Chenguang Guo +2 位作者 Qiang Li Lijuan Zhao Guangbo Hao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期937-952,共16页
To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based... To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency. 展开更多
关键词 Al-Li alloy thin-wall workpieces response surface methodology surface roughness specific cutting energy multi-objective particle swarm optimization algorithm
在线阅读 下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
9
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
在线阅读 下载PDF
Rail profile optimization through balancing of wear and fatigue
10
作者 Binjie XU Zhiyong SHI +2 位作者 Yun YANG Jianxi WANG Kaiyun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期967-982,共16页
Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focus... Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focusing solely on wear and not addressing fatigue in profile optimization can lead to the propagation of rail cracks,the peeling of material off the rail,and even rail fractures.Therefore,we propose an optimization approach that balances rail wear and fatigue for heavy-haul railway rails to mitigate rail fatigue damage.Initially,we performed a field investigation to acquire essential data and understand the characteristics of track damage.Based on theory and measured data,a simulation model for wear and fatigue was then established.Subsequently,the control points of the rail profile according to cubic non-uniform rational B-spline(NURBS)theory were set as the research variables.The rail’s wear rate and fatigue crack propagation rate were adopted as the objective functions.A multi-objective,multi-variable,and multi-constraint nonlinear optimization model was then constructed,specifically using a Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network).Ultimately,optimal solutions from the model were identified using a chaos microvariation adaptive genetic algorithm,and the effectiveness of the optimization was validated using a dynamics model and a rail damage model. 展开更多
关键词 Heavy-haul railway Rail wear Rail fatigue Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network) Rail profile optimization multi-objective optimization
原文传递
Interactive Multi-objective Optimization Design for the Pylon Structure of an Airplane 被引量:4
11
作者 An Weigang Li Weiji 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期524-528,共5页
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ... The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%. 展开更多
关键词 pylon structure multi-objective optimization algorithm interactive algorithm multi-objective particle swarm optimization neural network
在线阅读 下载PDF
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:13
12
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction Improved multi-objective particle swarm optimization(MOPSO) algorithm multi-objective Principal component analysis
原文传递
Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm
13
作者 Dazhi Wang Pengyi Pan Bowen Niu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1535-1555,共21页
The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to ... The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency. 展开更多
关键词 competition mechanism Levenberg-Marquardt back propagation neural network multi-objective particle swarm optimization algorithm permanent magnet eddy current coupler
在线阅读 下载PDF
Large Thinned Array Design Based on Multi-objective Cross Entropy Algorithm
14
作者 边莉 边晨源 王书民 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第4期437-442,共6页
To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus... To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient. 展开更多
关键词 thinned array multi-objective optimization cross entropy(CE) algorithm particle swarm optimization(PSO) algorithm
原文传递
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
15
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
在线阅读 下载PDF
Application of several optimization techniques for estimating TBM advance rate in granitic rocks 被引量:28
16
作者 Danial Jahed Armaghani Mohammadreza Koopialipoor +1 位作者 Aminaton Marto Saffet Yagiz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期779-789,共11页
This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have ... This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have been conducted along the 12,649 m of the Pahang-Selangor raw water transfer tunnel in Malaysia.Rock properties consisting of uniaxial compressive strength(UCS),Brazilian tensile strength(BTS),rock mass rating(RMR),rock quality designation(RQD),quartz content(q)and weathered zone as well as machine specifications including thrust force and revolution per minute(RPM)were measured to establish comprehensive datasets for optimization.Accordingly,to estimate the advance rate of TBM,two new hybrid optimization techniques,i.e.an artificial neural network(ANN)combined with both imperialist competitive algorithm(ICA)and particle swarm optimization(PSO),were developed for mechanical tunneling in granitic rocks.Further,the new hybrid optimization techniques were compared and the best one was chosen among them to be used for practice.To evaluate the accuracy of the proposed models for both testing and training datasets,various statistical indices including coefficient of determination(R^2),root mean square error(RMSE)and variance account for(VAF)were utilized herein.The values of R^2,RMSE,and VAF ranged in 0.939-0.961,0.022-0.036,and 93.899-96.145,respectively,with the PSO-ANN hybrid technique demonstrating the best performance.It is concluded that both the optimization techniques,i.e.PSO-ANN and ICA-ANN,could be utilized for predicting the advance rate of TBMs;however,the PSO-ANN technique is superior. 展开更多
关键词 Tunnel BORING machines (TBMs) ADVANCE rate Hybrid optimization techniques particle swarm optimization (PSO) Imperialist competitive algorithm (ICA)
在线阅读 下载PDF
Improvement of Stochastic Competitive Learning for Social Network
17
作者 Wenzheng Li Yijun Gu 《Computers, Materials & Continua》 SCIE EI 2020年第5期755-768,共14页
As an unsupervised learning method,stochastic competitive learning is commonly used for community detection in social network analysis.Compared with the traditional community detection algorithms,it has the advantage ... As an unsupervised learning method,stochastic competitive learning is commonly used for community detection in social network analysis.Compared with the traditional community detection algorithms,it has the advantage of realizing the time-series community detection by simulating the community formation process.In order to improve the accuracy and solve the problem that several parameters in stochastic competitive learning need to be pre-set,the author improves the algorithms and realizes improved stochastic competitive learning by particle position initialization,parameter optimization and particle domination ability self-adaptive.The experiment result shows that each improved method improves the accuracy of the algorithm,and the F1 score of the improved algorithm is 9.07%higher than that of original algorithm. 展开更多
关键词 Stochastic competitive learning particle swarm optimization algorithm improvement
在线阅读 下载PDF
An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II
18
作者 Lei Xing Yakui Liu 《Energy Engineering》 EI 2023年第4期1023-1043,共21页
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th... The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II. 展开更多
关键词 multi-objective optimization wind/photovoltaic/hydrogen power system particle swarm algorithm non-dominated sorting genetic algorithms-II
在线阅读 下载PDF
Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms 被引量:6
19
作者 焦毅 徐刚 《Chinese Physics C》 SCIE CAS CSCD 2017年第2期166-176,共11页
In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear pe... In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization(MOPSO) and multi-objective genetic algorithm(MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima. 展开更多
关键词 diffraction-limited storage ring High Energy Photon Source multi-objective particle swarm optimization multi-objective genetic algorithm lattice design
原文传递
Energy loss optimization of run-off-road wheels applying imperialist competitive algorithm
20
作者 Hamid Taghavifar Aref Mardani 《Information Processing in Agriculture》 EI 2014年第1期57-65,共9页
The novel imperialist competitive algorithm(ICA)has presented outstanding fitness on various optimization problems.Application of meta-heuristics has been a dynamic studying interest of the reliability optimization to... The novel imperialist competitive algorithm(ICA)has presented outstanding fitness on various optimization problems.Application of meta-heuristics has been a dynamic studying interest of the reliability optimization to determine idleness and reliability constituents.The application of a meta-heuristic evolutionary optimization method,imperialist competitive algorithm(ICA),for minimization of energy loss due to wheel rolling resistance in a soil bin facility equipped with single-wheel tester is discussed.The required data were collected thorough various designed experiments in the controlled soil bin environment.Local and global searching of the search space proposed that the energy loss could be reduced to the minimum amount of 15.46 J at the optimized input variable configuration of wheel load at 1.2 kN,tire inflation pressure of 296 kPa and velocity of 2 m/s.Meanwhile,genetic algorithm(GA),particle swarm optimization(PSO)and hybridized GA–PSO approaches were benchmarked among the broad spectrum of meta-heuristics to find the outperforming approach.It was deduced that,on account of the obtained results,ICA can achieve optimum configuration with superior accuracy in less required computational time. 展开更多
关键词 Imperialist competitive algorithm Genetic algorithm particle swarm optimization Energy loss Soil bin
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部