Let■be a compatible total order on the additive group Z^2,and L be the rank two HeisenbergVirasoro algebra.For any c=(c1,c2,c3,c4)∈C^4,we define a Z^2-graded Verma module M(c,■)for L.A necessary and sufficient cond...Let■be a compatible total order on the additive group Z^2,and L be the rank two HeisenbergVirasoro algebra.For any c=(c1,c2,c3,c4)∈C^4,we define a Z^2-graded Verma module M(c,■)for L.A necessary and sufficient condition for M(c,■)to be irreducible is provided.Moreover,the maximal Z^2-graded submodules of M(c,■)are characterized when M(c,■)is reducible.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11471268 and 11531004)。
文摘Let■be a compatible total order on the additive group Z^2,and L be the rank two HeisenbergVirasoro algebra.For any c=(c1,c2,c3,c4)∈C^4,we define a Z^2-graded Verma module M(c,■)for L.A necessary and sufficient condition for M(c,■)to be irreducible is provided.Moreover,the maximal Z^2-graded submodules of M(c,■)are characterized when M(c,■)is reducible.