We investigate the spin dynamics, starting from the initial band-insulating state, of fermionic high-spin atoms in optical superlattices. Through numerical simulations and analytical calculations, we determine the tim...We investigate the spin dynamics, starting from the initial band-insulating state, of fermionic high-spin atoms in optical superlattices. Through numerical simulations and analytical calculations, we determine the time evolution behavior of the system. When the spin-changing strength and tunneling strength are comparable, the spin dynamics feature a spin-changing oscillation with the amplitude modulated by the superexchange interaction. When the double-well potential is very shallow, the spin dynamics feature a simple harmonic oscillation with the oscillation frequencies related only to the spin-changing strength, which can be properly explained with the perturbation model.展开更多
基金supported by the National Key Research and Development Program of China under Grant No.2016YFA0301504
文摘We investigate the spin dynamics, starting from the initial band-insulating state, of fermionic high-spin atoms in optical superlattices. Through numerical simulations and analytical calculations, we determine the time evolution behavior of the system. When the spin-changing strength and tunneling strength are comparable, the spin dynamics feature a spin-changing oscillation with the amplitude modulated by the superexchange interaction. When the double-well potential is very shallow, the spin dynamics feature a simple harmonic oscillation with the oscillation frequencies related only to the spin-changing strength, which can be properly explained with the perturbation model.