In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ (...In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.展开更多
Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The gen...Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup>X of the space X which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every f in C(X,R) (the space of bounded continuous real valued functions on X) or Cc(X,R) (the space of continuous real valued functions on X with compact support) or the dual group <span style="white-space:nowrap;">Γ of the locally compact Abelian group G is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of f. Then X is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.展开更多
Without the successful work of Professor Kakutani on representing a unit vector space as a dense vector sub-lattice of in 1941, where X is a compact Hausdorff space and C(X) is the space of real continuous funct...Without the successful work of Professor Kakutani on representing a unit vector space as a dense vector sub-lattice of in 1941, where X is a compact Hausdorff space and C(X) is the space of real continuous functions on X. Professor M. H. Stone would not begin to work on “The generalized Weierstrass approximation theorem” and published the paper in 1948. Latter, we call this theorem as “Stone-Weierstrass theorem” which provided the sufficient and necessary conditions for a vector sub-lattice V to be dense in . From the theorem, it is not clear and easy to see whether 1) “the vector sub-lattice V of C(X) contains constant functions” is or is not a necessary condition;2) Is there any clear example of a vector sub-lattice V which is dense in , but V does not contain constant functions. This implies that we do need some different version of “Stone-Weierstrass theorem” so that we will be able to understand the “Stone-Weierstrass theorem” clearly and apply it to more places where they need this wonderful theorem.展开更多
基金supported by the research project#144003 of the Serbian Ministry of Science, Technology and Development
文摘In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.
文摘Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup>X of the space X which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every f in C(X,R) (the space of bounded continuous real valued functions on X) or Cc(X,R) (the space of continuous real valued functions on X with compact support) or the dual group <span style="white-space:nowrap;">Γ of the locally compact Abelian group G is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of f. Then X is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.
文摘Without the successful work of Professor Kakutani on representing a unit vector space as a dense vector sub-lattice of in 1941, where X is a compact Hausdorff space and C(X) is the space of real continuous functions on X. Professor M. H. Stone would not begin to work on “The generalized Weierstrass approximation theorem” and published the paper in 1948. Latter, we call this theorem as “Stone-Weierstrass theorem” which provided the sufficient and necessary conditions for a vector sub-lattice V to be dense in . From the theorem, it is not clear and easy to see whether 1) “the vector sub-lattice V of C(X) contains constant functions” is or is not a necessary condition;2) Is there any clear example of a vector sub-lattice V which is dense in , but V does not contain constant functions. This implies that we do need some different version of “Stone-Weierstrass theorem” so that we will be able to understand the “Stone-Weierstrass theorem” clearly and apply it to more places where they need this wonderful theorem.