Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation ...Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation of resources in both the time and frequency domains,aiming to minimize inter-system interference as the available spectrum fluctuates over time.In this paper,regarding maximization of detection probability and spectrum utilization efficiency as two fundamental objectives,a novel Dynamic Spectrum and Power Allocation based on Genetic Algorithm(GA-DSPA)model is proposed,which dynamically allocates communication channel frequency and power under the constraints of pulse radar detection probability and signal-to-interferenceplus-noise ratio of communication.To solve this bi-objective model,a non-dominated sortingbased multi-objective genetic algorithm is developed.A novel environment perception strategy and offspring sorting technique based on radar echoes are integrated into the optimization framework.Simulation results indicate that by integrating environmental monitoring mechanisms and dynamic adaptation strategies,the proposed method effectively tracks the evolving Paretooptimal Fronts(Po Fs),thereby ensuring optimal performance for both co-located pulse radar and communication systems.Hardware test results confirm that within the GA-DSPA framework,the pulse radar achieves higher detection probabilities under identical conditions,while the communication system realizes increased average throughput.展开更多
Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will ...Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will lead to the same ciphertext.This means that the key in the deterministic encryption algorithm can only be used once,thus the encryption is not practical.To solve this problem,a nondeterministic symmetric encryption end-to-end communication system based on generative adversarial networks is proposed.We design a nonce-based adversarial neural network model,where a“nonce”standing for“number used only once”is passed to communication participants,and does not need to be secret.Moreover,we optimize the network structure through adding Batch Normalization(BN)to the CNNs(Convolutional Neural Networks),selecting the appropriate activation functions,and setting appropriate CNNs parameters.Results of experiments and analysis show that our system can achieve non-deterministic symmetric encryption,where Alice encrypting the same plaintext with the key twice will generate different ciphertexts,and Bob can decrypt all these different ciphertexts of the same plaintext to the correct plaintext.And our proposed system has fast convergence and the correct rate of decryption when the plaintext length is 256 or even longer.展开更多
This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The ba...This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The base station(BS)provides short packet services to ground users using the non-orthogonal multiple access(NOMA)protocol through UAV-RIS,while preventing eavesdropper attacks.To optimize SEE,a joint optimization is performed concerning power allocation,UAV position,decoding order,and RIS phase shifts.An iterative algorithm based on block coordinate descent is proposed for mixed-integer non-convex SEE optimization problem.The original problem is decomposed into three sub-problems,solved alternately using successive convex approximation(SCA),quadratic transformation,penalty function,and semi-definite programming(SDP).Simulation results demonstrate the performance of the UAV-RIS-enhanced short-packet system under different parameters and verify the algorithm’s convergence.Compared to benchmark schemes such as orthogonal multiple access,long packet communication,and sum SEE,the proposed UAV-RIS-enhanced short-packet scheme achieves the higher minimum user’s SEE.展开更多
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as...In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.展开更多
1.Introduction From the first-generation(1G)through the second-generation(2G)Global System for Mobile Communications(GSM),the third-generation(3G)wideband code division multiple access(WCDMA)to the fourth-generation(4...1.Introduction From the first-generation(1G)through the second-generation(2G)Global System for Mobile Communications(GSM),the third-generation(3G)wideband code division multiple access(WCDMA)to the fourth-generation(4G)long-term evolution(LTE)wireless networks,terrestrial networks(TNs)have demonstrated significant success in increasing communication speeds and improving quality of service(QoS)for users.展开更多
Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th...Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.展开更多
The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacki...The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacking sufficient exploration of scenarios where communication nodes are in motion.This paper presents a multi-destination vehicle communication system based on decode-and-forward(DF)UAV relays,where source and destination vehicles are moving and an internal eavesdropper intercepts messages from UAV.The closed-form expressions for system outage probability and secrecy outage probability are derived to analyze the reliability and security of the system.Furthermore,the impact of the UAV's position,signal transmission power,and system time allocation ratio on the system's performance are also analyzed.The numerical simulation results validate the accuracy of the derived formulas and confirm the correctness of the analysis.The appropriate time allocation ratio significantly enhances the security performance of system under various environmental conditions.展开更多
High reliability applications in dense access scenarios have become one of the main goals of 6G environments.To solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication sys...High reliability applications in dense access scenarios have become one of the main goals of 6G environments.To solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)scheme.In this scheme,the preamble arrangement is combined with the access control.The preamble arrangement is realized by preamble slices which is from the virtual preamble pool.The access devices learn to queue orderly by deep reinforcement learning.The orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access time.The orderly queue is determined by interaction information among multiple agents.With the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of agents.Finally,the access performance of PSOQA is compared with other random contention schemes in different load scenarios.Simulation results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.展开更多
Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV...Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV-aided BC system,where the power beacons(PBs)are deployed as dedicated radio frequency(RF)sources to supply power for backscatter devices(BDs).After harvesting enough energy,the BDs transmit data to the UAV.We use stochastic geometry to model the large-scale BC sys-tem.Specifically,the PBs are modeled as a type II Mat´ern hard-core point process(MHCPP II)and the BDs are modeled as a homogeneous Poisson point process(HPPP).Firstly,the BDs’activation proba-bility and average coverage probability are derived.Then,to maximize the energy efficiency(EE),we opti-mize the RF power of the PBs under different PB den-sities.Furthermore,we compare the coverage proba-bility and EE performance of our system with a bench-mark scheme,in which the distribution of PBs is mod-eled as a HPPP.Simulation results show that the PBs modeled as MHCPP II has better performance,and we found that the higher the density of PBs,the smaller the RF power required,and the EE is also higher.展开更多
The performance of traditional regular Intelligent Reflecting Surface(IRS)improves as the number of IRS elements increases,but more reflecting elements lead to higher IRS power consumption and greater overhead of chan...The performance of traditional regular Intelligent Reflecting Surface(IRS)improves as the number of IRS elements increases,but more reflecting elements lead to higher IRS power consumption and greater overhead of channel estimation.The Irregular Intelligent Reflecting Surface(IIRS)can enhance the performance of the IRS as well as boost the system performance when the number of reflecting elements is limited.However,due to the lack of radio frequency chain in IRS,it is challenging for the Base Station(BS)to gather perfect Channel State Information(CSI),especially in the presence of Eavesdroppers(Eves).Therefore,in this paper we investigate the minimum transmit power problem of IIRS-aided Simultaneous Wireless Information and Power Transfer(SWIPT)secure communication system with imperfect CSI of BS-IIRS-Eves links,which is subject to the rate outage probability constraints of the Eves,the minimum rate constraints of the Information Receivers(IRs),the energy harvesting constraints of the Energy Receivers(ERs),and the topology matrix constraints.Afterward,the formulated nonconvex problem can be efficiently tackled by employing joint optimization algorithm combined with successive refinement method and adaptive topology design method.Simulation results demonstrate the effectiveness of the proposed scheme and the superiority of IIRS.展开更多
To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase n...To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase noise and considering the correlation of neighboring symbols in the NLC section of DBP.Based on this model,with the aid of neural network optimization,a learned version of M-W-DBP(M-W-LDBP)is also proposed and explored.Furthermore,enough technical details are revealed for the first time,including the principle of our proposed M-W-DBP and M-W-LDBP,the training process,and the complexity analysis of different DBPclass NLC algorithms.Evaluated numerically with QPSK,16QAM,and PS-64QAM modulation formats,1-step-per-span(1-StPS)M-W-DBP/LDBP achieves up to 1.29/1.49 dB and 0.63/0.74 dB signal-to-noise ratio improvement compared to chromatic dispersion compensation(CDC)in 90-GBaud and 128-GBaud 1000-km single-channel transmission systems,respectively.Moreover,1-StPS M-W-DBP/LDBP provides a more powerful NLC ability than 2-StPS LDBP but only needs about 60%of the complexity.The effectiveness of the proposed M-W-DBP and M-W-LDBP in the presence of laser phase noise is also verified and the necessity of using the learned version of M-WDBP is also discussed.This work is a comprehensive study of M-W-DBP/LDBP and other DBP-class NLC algorithms in HSR systems.展开更多
Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to...Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.展开更多
Reconfigurable intelligent surfaces(RISs)with the capability of nearly passive beamforming,have recently sparked considerable interests.This paper presents an energy-efficient discrete phase encoding method for RIS-as...Reconfigurable intelligent surfaces(RISs)with the capability of nearly passive beamforming,have recently sparked considerable interests.This paper presents an energy-efficient discrete phase encoding method for RIS-assisted communication systems.Firstly,the beamforming gain,power consumption and energy efficiency models for the RIS-assisted system are illustrated.On this basis,the discrete phase encoding problem is formulated for the purpose of improving the energy efficiency,under the power constraint and the quality-of-service(QoS)requirement.According to the interrelation between the phase encoding and power consumption,a three-step encoding method is proposed with the capability of customizing the beamforming gain,power consumption,and energy efficiency.Simulation results indicate that the proposed method is capable of achieving a more favorable performance in terms of satisfying the QoS demand,reducing the power consumption,and improving the energy efficiency.Furthermore,two field trials at 35 GHz evidence the superiority performance and feasibility characteristics of the proposed method in real environment.This work may provide a reference for future applications of RIS-assisted system with an energy-efficient manner.展开更多
Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because ...Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.展开更多
As one of secure communication means, chaotic communication systems has been well-developed during the past three decades. Technical papers, both for theoretical and practical investigations, have reached a huge amoun...As one of secure communication means, chaotic communication systems has been well-developed during the past three decades. Technical papers, both for theoretical and practical investigations, have reached a huge amount in number. On the other hand, fractional chaos, as a parallel ongoing research topic, also attracts many researchers to investigate. As far as the IT field is concerned, the research on control systems by using fractional chaos known as FOC (fractional order control) has been a hot issue for quite a long time. As a comparison, interesting enough, up to now we have not found any research result related to Fractional Chaos Communi- cation (FCC) system, i.e., a system based on fractional chaos. The motivation of the present article is to reveal the feasibility of realizing communication systems based upon FCC and their superiority over the conventional integer chaotic communication systems. Principles of FCC and its advantages over integer chaotic communication systems are also discussed.展开更多
The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-con...The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-cone directional transducer and a horizontal-toroid one is installed on the mothership. Improved techniques are proposed to combat adverse channel conditions, such as frequency selectivity, non-stationary ship noise, and Doppler effects of the platform’s nonlinear movement. For coherent modulation, a turbo-coded single-carrier scheme is used. In the receiver, the sparse decision-directed Normalized Least-Mean-Square soft equalizer automatically adjusts the tap pattern and weights according to the multipath structure, the two receivers’ asymmetry, the signal’s frequency selectivity and the noise’s spectrum fluctuation. The use of turbo code in turbo equalization significantly suppresses the error floor and decreases the equalizer’s iteration times, which is verified by both the extrinsic information transfer charts and bit-error-rate performance. For noncoherent modulation, a concatenated error correction scheme of nonbinary convolutional code and Hadamard code is adopted to utilize full frequency diversity. Robust and lowcomplexity synchronization techniques in the time and Doppler domains are proposed. Sea trials with the submersible to a maximum depth of over 4500 m show that the shipborne communication system performs robustly during the adverse conditions. From the ten-thousand communication records in the 28 dives in 2017, the failure rate of the coherent frames and that of the noncoherent packets are both below 10%, where both synchronization errors and decoding errors are taken into account.展开更多
By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5~5 white LED array is studied in this paper. The OFDM transmitter and receiver are m...By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5~5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the re- sponse of the detector, is derived based on Lambert's lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quad- rate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10^-5, and the communication distance can reach 0.9 m.展开更多
An OOK-NRZ visible light communication (VLC) system is designed by using a single white LED and a 550 nm visible photodetector. The emitting model of the single LED is established, and the general expression of the de...An OOK-NRZ visible light communication (VLC) system is designed by using a single white LED and a 550 nm visible photodetector. The emitting model of the single LED is established, and the general expression of the detector's output signals under OOK modulation is deduced. With the selected LED, detector and other related parameters, the designed communication system is optimized and its performance is analyzed. The optimized communication distance between the LED and the detector is 0.54 m at the communication bit rate of 1 Mbit/s. With the best communication distance, when the signal-to-noise ratio (SNR) is larger than 6.5 dB, the bit error rate (BER) can drop to 10-4. The analytical model and theory presented in this paper can be of certain practical meanings in the design of similar communication systems.展开更多
Channel estimation is a key technology in indoor wireless visible light communications(VLCs).Using the training sequence(TS),this paper investigates the channel estimation in indoor wireless visible light communicatio...Channel estimation is a key technology in indoor wireless visible light communications(VLCs).Using the training sequence(TS),this paper investigates the channel estimation in indoor wireless visible light communications.Based on the propagation and signal modulation characteristics of visible light,a link model for the indoor wireless visible light communications is established.Using the model,three channel estimation methods,i.e.,the correlation method,the least square(LS) method and the minimum mean square error(MMSE) method,are proposed.Moreover,the performances of the proposed three methods are evaluated by computer simulation.The results show that the performance of the correlation method is the worst,the LS method is suitable for higher signal to noise ratio(SNR),and the MMSE method obtains the best performance at the expense of highest complexity.展开更多
With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficienc...With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficiency and accuracy for the specific case of military vehicular communication systems. Face to this situation, a modified four-level assessment model is proposed in the paper. First, the development of EMC assessment technology is briefly reviewed, and the theoretical mechanism of EMI environment is introduced. Then, the architecture of the proposed model is outlined, and the assessment methods are explored. To demonstrate the application of it, an example involving a communication system in a military vehicle is presented. From the physical layer to the signal layer, a hierarchical assessment on the entire system is successfully performed based on the proposed model, and we can make a qualitative EMC assessment on the EMC performance of the system. Based on a comparison with the traditional model, we conclude that the proposed model is more accurate, more efficient and less time-consuming, which is suitable for the EMC assessment on militaryvehicular communication systems. We hope that the proposed model will serve as a useful reference for system-level EMC assessments for other systems.展开更多
基金co-supported by the National Natural Science Foundation of China(No.62293495)the National Key Research and Development Program of China(No.2023YFB3306900)the Academic Excellence Foundation of BUAA for ph.D Students,China。
文摘Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation of resources in both the time and frequency domains,aiming to minimize inter-system interference as the available spectrum fluctuates over time.In this paper,regarding maximization of detection probability and spectrum utilization efficiency as two fundamental objectives,a novel Dynamic Spectrum and Power Allocation based on Genetic Algorithm(GA-DSPA)model is proposed,which dynamically allocates communication channel frequency and power under the constraints of pulse radar detection probability and signal-to-interferenceplus-noise ratio of communication.To solve this bi-objective model,a non-dominated sortingbased multi-objective genetic algorithm is developed.A novel environment perception strategy and offspring sorting technique based on radar echoes are integrated into the optimization framework.Simulation results indicate that by integrating environmental monitoring mechanisms and dynamic adaptation strategies,the proposed method effectively tracks the evolving Paretooptimal Fronts(Po Fs),thereby ensuring optimal performance for both co-located pulse radar and communication systems.Hardware test results confirm that within the GA-DSPA framework,the pulse radar achieves higher detection probabilities under identical conditions,while the communication system realizes increased average throughput.
基金supported by The National Defense Innovation Project(No.ZZKY20222411)Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-546).
文摘Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will lead to the same ciphertext.This means that the key in the deterministic encryption algorithm can only be used once,thus the encryption is not practical.To solve this problem,a nondeterministic symmetric encryption end-to-end communication system based on generative adversarial networks is proposed.We design a nonce-based adversarial neural network model,where a“nonce”standing for“number used only once”is passed to communication participants,and does not need to be secret.Moreover,we optimize the network structure through adding Batch Normalization(BN)to the CNNs(Convolutional Neural Networks),selecting the appropriate activation functions,and setting appropriate CNNs parameters.Results of experiments and analysis show that our system can achieve non-deterministic symmetric encryption,where Alice encrypting the same plaintext with the key twice will generate different ciphertexts,and Bob can decrypt all these different ciphertexts of the same plaintext to the correct plaintext.And our proposed system has fast convergence and the correct rate of decryption when the plaintext length is 256 or even longer.
基金co-supported by the National Natural Science Foundation of China(Nos.U23A20279,62271094)the National Key R&D Program of China(No.SQ2023YFB2500024)+2 种基金the Science Foundation for Youths of Natural Science Foundation of Sichuan Provincial,China(No.2022NSFSC0936)the China Postdoctoral Science Foundation(No.2022M720666)the Open Fund of Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications,China(No.BDIC-2023-B-002).
文摘This work focuses on maximizing the minimum user’s security energy efficiency(SEE)in an unmanned aerial vehicle-mounted reconfigurable intelligent surface(UAV-RIS)enhanced short-packet communication(SPC)system.The base station(BS)provides short packet services to ground users using the non-orthogonal multiple access(NOMA)protocol through UAV-RIS,while preventing eavesdropper attacks.To optimize SEE,a joint optimization is performed concerning power allocation,UAV position,decoding order,and RIS phase shifts.An iterative algorithm based on block coordinate descent is proposed for mixed-integer non-convex SEE optimization problem.The original problem is decomposed into three sub-problems,solved alternately using successive convex approximation(SCA),quadratic transformation,penalty function,and semi-definite programming(SDP).Simulation results demonstrate the performance of the UAV-RIS-enhanced short-packet system under different parameters and verify the algorithm’s convergence.Compared to benchmark schemes such as orthogonal multiple access,long packet communication,and sum SEE,the proposed UAV-RIS-enhanced short-packet scheme achieves the higher minimum user’s SEE.
基金supported by Beijing Natural Science Fund–Haidian Original Innovation Joint Fund(L232040 and L232045).
文摘In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature.
基金support from the Development Program from Institute for Communication Systems(ICS),the 5G&6G Innovation Centre(5GIC&6GIC)at University of Surreythe China Scholarship Council,the National Natural Science Foundation of China(62371158)the Major Key Project of Pengcheng Laboratory(PCL2024A01).
文摘1.Introduction From the first-generation(1G)through the second-generation(2G)Global System for Mobile Communications(GSM),the third-generation(3G)wideband code division multiple access(WCDMA)to the fourth-generation(4G)long-term evolution(LTE)wireless networks,terrestrial networks(TNs)have demonstrated significant success in increasing communication speeds and improving quality of service(QoS)for users.
基金supported by the Science and Technology Project of the State Grid Corporation of China(5400-202255158A-1-1-ZN).
文摘Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.
基金supported by the National Natural Science Foundation of China under Grants 62001359 and 61901201by the Key Science and Technology Research Project of Henan Province under Grants 232102211059the Natural Science Basic Research Program of Shaanxi under Grants 2022JQ-658 and 2022JQ-621。
文摘The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacking sufficient exploration of scenarios where communication nodes are in motion.This paper presents a multi-destination vehicle communication system based on decode-and-forward(DF)UAV relays,where source and destination vehicles are moving and an internal eavesdropper intercepts messages from UAV.The closed-form expressions for system outage probability and secrecy outage probability are derived to analyze the reliability and security of the system.Furthermore,the impact of the UAV's position,signal transmission power,and system time allocation ratio on the system's performance are also analyzed.The numerical simulation results validate the accuracy of the derived formulas and confirm the correctness of the analysis.The appropriate time allocation ratio significantly enhances the security performance of system under various environmental conditions.
基金supported in part by the National Natural Science Foundation of China under grants 61771255in part by the Provincial and Ministerial Key Laboratory Open Project under grant 20190904in part by the Key Technologies R&D Program of Jiangsu (Prospective and Key Technologies for Industry)under Grants BE2022067,BE2022067-1 and BE2022067-2。
文摘High reliability applications in dense access scenarios have become one of the main goals of 6G environments.To solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)scheme.In this scheme,the preamble arrangement is combined with the access control.The preamble arrangement is realized by preamble slices which is from the virtual preamble pool.The access devices learn to queue orderly by deep reinforcement learning.The orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access time.The orderly queue is determined by interaction information among multiple agents.With the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of agents.Finally,the access performance of PSOQA is compared with other random contention schemes in different load scenarios.Simulation results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
文摘Backscatter communication(BC)is con-sidered a key technology in self-sustainable commu-nications,and the unmanned aerial vehicle(UAV)as a data collector can improve the efficiency of data col-lection.We consider a UAV-aided BC system,where the power beacons(PBs)are deployed as dedicated radio frequency(RF)sources to supply power for backscatter devices(BDs).After harvesting enough energy,the BDs transmit data to the UAV.We use stochastic geometry to model the large-scale BC sys-tem.Specifically,the PBs are modeled as a type II Mat´ern hard-core point process(MHCPP II)and the BDs are modeled as a homogeneous Poisson point process(HPPP).Firstly,the BDs’activation proba-bility and average coverage probability are derived.Then,to maximize the energy efficiency(EE),we opti-mize the RF power of the PBs under different PB den-sities.Furthermore,we compare the coverage proba-bility and EE performance of our system with a bench-mark scheme,in which the distribution of PBs is mod-eled as a HPPP.Simulation results show that the PBs modeled as MHCPP II has better performance,and we found that the higher the density of PBs,the smaller the RF power required,and the EE is also higher.
基金supported in part by the Shenzhen Basic Research Program under Grant JCYJ20220531103008018,and Grants 20231120142345001 and 20231127144045001the Natural Science Foundation of China under Grant U20A20156.
文摘The performance of traditional regular Intelligent Reflecting Surface(IRS)improves as the number of IRS elements increases,but more reflecting elements lead to higher IRS power consumption and greater overhead of channel estimation.The Irregular Intelligent Reflecting Surface(IIRS)can enhance the performance of the IRS as well as boost the system performance when the number of reflecting elements is limited.However,due to the lack of radio frequency chain in IRS,it is challenging for the Base Station(BS)to gather perfect Channel State Information(CSI),especially in the presence of Eavesdroppers(Eves).Therefore,in this paper we investigate the minimum transmit power problem of IIRS-aided Simultaneous Wireless Information and Power Transfer(SWIPT)secure communication system with imperfect CSI of BS-IIRS-Eves links,which is subject to the rate outage probability constraints of the Eves,the minimum rate constraints of the Information Receivers(IRs),the energy harvesting constraints of the Energy Receivers(ERs),and the topology matrix constraints.Afterward,the formulated nonconvex problem can be efficiently tackled by employing joint optimization algorithm combined with successive refinement method and adaptive topology design method.Simulation results demonstrate the effectiveness of the proposed scheme and the superiority of IIRS.
基金supported in part by National Natural Science Foundation of China(No.62271080)in part by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2022ZT06)in part by BUPT Excellent Ph.D Students Foundation(No.CX2022102).
文摘To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase noise and considering the correlation of neighboring symbols in the NLC section of DBP.Based on this model,with the aid of neural network optimization,a learned version of M-W-DBP(M-W-LDBP)is also proposed and explored.Furthermore,enough technical details are revealed for the first time,including the principle of our proposed M-W-DBP and M-W-LDBP,the training process,and the complexity analysis of different DBPclass NLC algorithms.Evaluated numerically with QPSK,16QAM,and PS-64QAM modulation formats,1-step-per-span(1-StPS)M-W-DBP/LDBP achieves up to 1.29/1.49 dB and 0.63/0.74 dB signal-to-noise ratio improvement compared to chromatic dispersion compensation(CDC)in 90-GBaud and 128-GBaud 1000-km single-channel transmission systems,respectively.Moreover,1-StPS M-W-DBP/LDBP provides a more powerful NLC ability than 2-StPS LDBP but only needs about 60%of the complexity.The effectiveness of the proposed M-W-DBP and M-W-LDBP in the presence of laser phase noise is also verified and the necessity of using the learned version of M-WDBP is also discussed.This work is a comprehensive study of M-W-DBP/LDBP and other DBP-class NLC algorithms in HSR systems.
基金supported in part by the National Science Foundation of China(NSFC)under Grant 62161024Jiangxi Provincial Natural Science Foundation under Grant 20224BAB212002+3 种基金Jiangxi Provincial Talent Project for Academic and Technical Leaders of Major Disciplines under Grant 20232BCJ23085,China Postdoctoral Science Foundation under Grant 2021TQ0136 and 2022M711463the State Key Laboratory of Computer Architecture(ICT,CAS)Open Project under Grant CARCHB202019supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62061030supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62161023。
文摘Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.
基金supported in part by the National Natural Science Foundation of China under Grants 62231009 and 62261160576in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003in part by the Startup Research Fund of Southeast University under Grant RF1028623267。
文摘Reconfigurable intelligent surfaces(RISs)with the capability of nearly passive beamforming,have recently sparked considerable interests.This paper presents an energy-efficient discrete phase encoding method for RIS-assisted communication systems.Firstly,the beamforming gain,power consumption and energy efficiency models for the RIS-assisted system are illustrated.On this basis,the discrete phase encoding problem is formulated for the purpose of improving the energy efficiency,under the power constraint and the quality-of-service(QoS)requirement.According to the interrelation between the phase encoding and power consumption,a three-step encoding method is proposed with the capability of customizing the beamforming gain,power consumption,and energy efficiency.Simulation results indicate that the proposed method is capable of achieving a more favorable performance in terms of satisfying the QoS demand,reducing the power consumption,and improving the energy efficiency.Furthermore,two field trials at 35 GHz evidence the superiority performance and feasibility characteristics of the proposed method in real environment.This work may provide a reference for future applications of RIS-assisted system with an energy-efficient manner.
基金supported by the National Natural Science Foundation of China under Grants No.61671367 and 62471381the Research Foundation of Science and Technology on Communication Networks Laboratory,and the National Key Laboratory of Wireless Communications Foundation under Grant No.IFN202401.
文摘Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.
文摘As one of secure communication means, chaotic communication systems has been well-developed during the past three decades. Technical papers, both for theoretical and practical investigations, have reached a huge amount in number. On the other hand, fractional chaos, as a parallel ongoing research topic, also attracts many researchers to investigate. As far as the IT field is concerned, the research on control systems by using fractional chaos known as FOC (fractional order control) has been a hot issue for quite a long time. As a comparison, interesting enough, up to now we have not found any research result related to Fractional Chaos Communi- cation (FCC) system, i.e., a system based on fractional chaos. The motivation of the present article is to reveal the feasibility of realizing communication systems based upon FCC and their superiority over the conventional integer chaotic communication systems. Principles of FCC and its advantages over integer chaotic communication systems are also discussed.
基金financially supported by the National Natural Science Foundation of China(Grant No.61471351)the National Key Research and Development Program of China(Grant Nos.2016YFC0300300 and 2016YFC0300605)the National High Technology Research and Development Program of China(863 Program,Grant No.2009AA093301)
文摘The Shipborne acoustic communication system of the submersible Shenhai Yongshi works in vertical, horizontal and slant channels according to the relative positions. For ease of use, an array combined by a vertical-cone directional transducer and a horizontal-toroid one is installed on the mothership. Improved techniques are proposed to combat adverse channel conditions, such as frequency selectivity, non-stationary ship noise, and Doppler effects of the platform’s nonlinear movement. For coherent modulation, a turbo-coded single-carrier scheme is used. In the receiver, the sparse decision-directed Normalized Least-Mean-Square soft equalizer automatically adjusts the tap pattern and weights according to the multipath structure, the two receivers’ asymmetry, the signal’s frequency selectivity and the noise’s spectrum fluctuation. The use of turbo code in turbo equalization significantly suppresses the error floor and decreases the equalizer’s iteration times, which is verified by both the extrinsic information transfer charts and bit-error-rate performance. For noncoherent modulation, a concatenated error correction scheme of nonbinary convolutional code and Hadamard code is adopted to utilize full frequency diversity. Robust and lowcomplexity synchronization techniques in the time and Doppler domains are proposed. Sea trials with the submersible to a maximum depth of over 4500 m show that the shipborne communication system performs robustly during the adverse conditions. From the ten-thousand communication records in the 28 dives in 2017, the failure rate of the coherent frames and that of the noncoherent packets are both below 10%, where both synchronization errors and decoding errors are taken into account.
基金supported by the Innovation Fund for Technology Based Firms of Changchun of China (No.10ZC04)
文摘By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5~5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the re- sponse of the detector, is derived based on Lambert's lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quad- rate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10^-5, and the communication distance can reach 0.9 m.
基金supported by the Innovation Fund For Technology Based Firms of Changchun, China (No.10ZC04)
文摘An OOK-NRZ visible light communication (VLC) system is designed by using a single white LED and a 550 nm visible photodetector. The emitting model of the single LED is established, and the general expression of the detector's output signals under OOK modulation is deduced. With the selected LED, detector and other related parameters, the designed communication system is optimized and its performance is analyzed. The optimized communication distance between the LED and the detector is 0.54 m at the communication bit rate of 1 Mbit/s. With the best communication distance, when the signal-to-noise ratio (SNR) is larger than 6.5 dB, the bit error rate (BER) can drop to 10-4. The analytical model and theory presented in this paper can be of certain practical meanings in the design of similar communication systems.
基金supported by the National Natural Science Foundation of China(No.60972023)the National Science and Technology Important Special Project(Nos.2010ZX03003-002 and 2010ZX03003-004)+4 种基金the Open Research Fund of National Mobile Communication Research Laboratory,Southeast University(No.2010D01)the Open Research Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks,China(No.2008SH06)the Startup Fund of Nanjing University of Aeronautics and Astronautics(NUAA)the NUAA Research Funding(No.NS2010091)the Fundation of Graduate Innovation Center in NUAA
文摘Channel estimation is a key technology in indoor wireless visible light communications(VLCs).Using the training sequence(TS),this paper investigates the channel estimation in indoor wireless visible light communications.Based on the propagation and signal modulation characteristics of visible light,a link model for the indoor wireless visible light communications is established.Using the model,three channel estimation methods,i.e.,the correlation method,the least square(LS) method and the minimum mean square error(MMSE) method,are proposed.Moreover,the performances of the proposed three methods are evaluated by computer simulation.The results show that the performance of the correlation method is the worst,the LS method is suitable for higher signal to noise ratio(SNR),and the MMSE method obtains the best performance at the expense of highest complexity.
基金supported by the National Moon Exploration Program of China (No. TY3Q20110020)in part supported by the 13th Five-Year Community Technology Research Program of National Equipment Development Department of China (No.41409020301)the National Natural Science Foundation of China (50971094)
文摘With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficiency and accuracy for the specific case of military vehicular communication systems. Face to this situation, a modified four-level assessment model is proposed in the paper. First, the development of EMC assessment technology is briefly reviewed, and the theoretical mechanism of EMI environment is introduced. Then, the architecture of the proposed model is outlined, and the assessment methods are explored. To demonstrate the application of it, an example involving a communication system in a military vehicle is presented. From the physical layer to the signal layer, a hierarchical assessment on the entire system is successfully performed based on the proposed model, and we can make a qualitative EMC assessment on the EMC performance of the system. Based on a comparison with the traditional model, we conclude that the proposed model is more accurate, more efficient and less time-consuming, which is suitable for the EMC assessment on militaryvehicular communication systems. We hope that the proposed model will serve as a useful reference for system-level EMC assessments for other systems.