This paper resumes a research project developed in the concession area of AES Eletropaulo, the largest electrical energy distribution company in Brazil. First, the global standards of information exchange within power...This paper resumes a research project developed in the concession area of AES Eletropaulo, the largest electrical energy distribution company in Brazil. First, the global standards of information exchange within power transmission and distribution area were evaluated, allowing the definition of state of the art on the theme, followed by determining its applications considering technologies already applied by the company. The specifications needed for the generation of a data integration model are adapted to radial overhead network at company concession area. The project developed an intermediary connectivity layer, based on the CIM (common information model), which enables corporative systems to communicate in a standard way, through the use of integrating technologies. It, therefore, enabled modeling all main subjects of an electrical network in an open, extensible and non-proprietary way, in a model that contains classes and attributes of such subjects, as well as their relationships. Calculation and planning products adopted by the company were integrated to the technological layer implemented.展开更多
The CIM (common information model) is an abstract information model that can be used to model an electrical network and various equipments used on the network. By using a common model, utilities and vendors can redu...The CIM (common information model) is an abstract information model that can be used to model an electrical network and various equipments used on the network. By using a common model, utilities and vendors can reduce their integration costs, which should allow more resources to be applied toward increased functionality for managing and optimizing the electrical system. As a part of smart grid, the SPG (smart power grid) was built on Jeju Island. The SPG consists of IDAS (intelligent distribution automation system), substation automation system, intelligent transmission system, and active telemetrics system. To integrate these systems which have different operating systems and platforms CIM standard was used. But IDAS has many functions and advanced algorithms not defined in CIM. In this paper, the authors introduce how to develop and extend the CIM model for managing the IDAS.展开更多
To address the challenges of ill-defined optimization objectives,difficult constraint coordination,and lack of quantitative basis for interconnection splicing and switch placement in current distribution network topol...To address the challenges of ill-defined optimization objectives,difficult constraint coordination,and lack of quantitative basis for interconnection splicing and switch placement in current distribution network topology optimization,this paper proposes a data-driven intelligent optimization method for panoramic construction of distribution network topology based on the Common Information Model(CIM).This method integrates multi-source heterogeneous data relationships-including equipment,terminals,and connection nodes-through joint analysis of multi-line CIM and hierarchical topology extraction.It automatically identifies feeder trunk paths and branch structures,incorporates inter-connection switch splicing and intelligent path optimization strategies,and performs topology opti-mization and switch placement based on the principle of minimizing outage impact.This constructs a complete,robust main-branch topology graph model.The algorithm employs depth-first search(DFS)for supply path modeling,complemented by semantic analysis of equipment attributes and hierarchical node classification to refine topology simplification.Batch testing on a dataset of 6880 medium-voltage feeders in a Central China city achieved a 98.30%successful modeling rate for complete interconnection information,with an average processing time of approximately 4.57 s per feeder.Further validation using representative overhead,cable,and hybrid lines demonstrated high consistency between the automatically generated topology and the original system diagram in node identification,path con-struction,and information annotation,confirming the algorithm's structural adaptability and engi-neering practicality.These findings provide dynamically interactive topology model support for multiple distribution network scenarios-including planning,operation,and maintenance-offering significant application and promotion value.展开更多
The exchange of information between transmission system operators(TSOs)and distribution system operators(DSOs)is a common practice.However,the evolution of the regulatory frameworks in Europe has increased the need fo...The exchange of information between transmission system operators(TSOs)and distribution system operators(DSOs)is a common practice.However,the evolution of the regulatory frameworks in Europe has increased the need for enhancing TSO-DSO data exchange and interoperability.This paper provides an overview of the TSO-DSO data exchanges and demonstrates the best practices using International Electrotechnical Commission(IEC)common information model(CIM),including the implementation of IEC common grid model exchange standard(CGMES),and discussion of the corresponding advantages,disadvantages,and challenges.Furthermore,this paper evaluates and reports the activities already carried out within European projects,with particular focus on TSO-DSO interoperability.Finally,this paper concludes the need for TSOs and DSOs to rely on standard-based solutions when performing TSO-DSO data exchange,which enables the efficient operation and development of the future power systems.展开更多
文摘This paper resumes a research project developed in the concession area of AES Eletropaulo, the largest electrical energy distribution company in Brazil. First, the global standards of information exchange within power transmission and distribution area were evaluated, allowing the definition of state of the art on the theme, followed by determining its applications considering technologies already applied by the company. The specifications needed for the generation of a data integration model are adapted to radial overhead network at company concession area. The project developed an intermediary connectivity layer, based on the CIM (common information model), which enables corporative systems to communicate in a standard way, through the use of integrating technologies. It, therefore, enabled modeling all main subjects of an electrical network in an open, extensible and non-proprietary way, in a model that contains classes and attributes of such subjects, as well as their relationships. Calculation and planning products adopted by the company were integrated to the technological layer implemented.
文摘The CIM (common information model) is an abstract information model that can be used to model an electrical network and various equipments used on the network. By using a common model, utilities and vendors can reduce their integration costs, which should allow more resources to be applied toward increased functionality for managing and optimizing the electrical system. As a part of smart grid, the SPG (smart power grid) was built on Jeju Island. The SPG consists of IDAS (intelligent distribution automation system), substation automation system, intelligent transmission system, and active telemetrics system. To integrate these systems which have different operating systems and platforms CIM standard was used. But IDAS has many functions and advanced algorithms not defined in CIM. In this paper, the authors introduce how to develop and extend the CIM model for managing the IDAS.
基金supported by the State Grid Corporation of China science and technology project funding(5400-202322560A-3-2-ZN).
文摘To address the challenges of ill-defined optimization objectives,difficult constraint coordination,and lack of quantitative basis for interconnection splicing and switch placement in current distribution network topology optimization,this paper proposes a data-driven intelligent optimization method for panoramic construction of distribution network topology based on the Common Information Model(CIM).This method integrates multi-source heterogeneous data relationships-including equipment,terminals,and connection nodes-through joint analysis of multi-line CIM and hierarchical topology extraction.It automatically identifies feeder trunk paths and branch structures,incorporates inter-connection switch splicing and intelligent path optimization strategies,and performs topology opti-mization and switch placement based on the principle of minimizing outage impact.This constructs a complete,robust main-branch topology graph model.The algorithm employs depth-first search(DFS)for supply path modeling,complemented by semantic analysis of equipment attributes and hierarchical node classification to refine topology simplification.Batch testing on a dataset of 6880 medium-voltage feeders in a Central China city achieved a 98.30%successful modeling rate for complete interconnection information,with an average processing time of approximately 4.57 s per feeder.Further validation using representative overhead,cable,and hybrid lines demonstrated high consistency between the automatically generated topology and the original system diagram in node identification,path con-struction,and information annotation,confirming the algorithm's structural adaptability and engi-neering practicality.These findings provide dynamically interactive topology model support for multiple distribution network scenarios-including planning,operation,and maintenance-offering significant application and promotion value.
基金the OneNet,TDX-ASSIST,EU-SysFlex,and INTER-RFACE projects funded by the European Union's Horizon 2020 Research and Innovation Programme(especially under Grants No.957739,No.774500,No.773505,and No.824330).
文摘The exchange of information between transmission system operators(TSOs)and distribution system operators(DSOs)is a common practice.However,the evolution of the regulatory frameworks in Europe has increased the need for enhancing TSO-DSO data exchange and interoperability.This paper provides an overview of the TSO-DSO data exchanges and demonstrates the best practices using International Electrotechnical Commission(IEC)common information model(CIM),including the implementation of IEC common grid model exchange standard(CGMES),and discussion of the corresponding advantages,disadvantages,and challenges.Furthermore,this paper evaluates and reports the activities already carried out within European projects,with particular focus on TSO-DSO interoperability.Finally,this paper concludes the need for TSOs and DSOs to rely on standard-based solutions when performing TSO-DSO data exchange,which enables the efficient operation and development of the future power systems.