We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechan...We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/A1. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A.展开更多
Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view ...Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design prac- tices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61177017,61125505,60978061,61077022,61036007,and 60877005)the 111 Project (Grant No. B08002)
文摘We report on white organic light-emitting diodes (WOLEDs) based on polyvinylcarbazole (PVK) doped with 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and perylene, and investigate the luminescence mechanism of the devices. The chromaticity of light emission can be tuned by adjusting the concentration of the dopants. White light with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.34) is achieved by mixing the yellow electromer emission of TAPC and the blue monomer emission of perylene from the device ITO/PVK: TAPC: perylene (100:9:1 in wt.) (100 nm)/tris-(8-hydroxyquinoline aluminum (Alq3) (10 nm)/A1. The device exhibits a maximal luminance of 3727 cd/m2 and a current efficiency of 2 cd/A.
文摘Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design prac- tices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.