The careful observation and evaluation of the squamocolumnar junction(SCJ)are essential requirements in colposcopy procedures.While traditional colposcopes with visible light offer high resolution and sensitivity,the ...The careful observation and evaluation of the squamocolumnar junction(SCJ)are essential requirements in colposcopy procedures.While traditional colposcopes with visible light offer high resolution and sensitivity,the presence of glare patterns on the cervix limits the visualization of deeper tissue features.Cross-polarization imaging,on the other hand,overcomes this limitation by effectively removing glare and providing greater optical penetration depth to noninvasively examine subsurface tissue structures.In this study,we present the potential of polarized light in enhancing diagnostics through cross-polarization imaging for the identification and contrast enhancement of squamous and columnar epithelium(CE)in cases of cervical ectropion.Our results demonstrate that polarized light colposcopy offers valuable diagnostic information that complements traditional colposcopy.By effectively reducing glare and improving visibility during cervical examinations,polarized light colposcopy proves to be a useful tool.Furthermore,we introduce a novel method that practically enhances the contrast ratio(CR)between columnar and squamous epithelium(SE)in colposcopic images.This method significantly increases the contrast between these tissue types,facilitating clearer differentiation and improving diagnostic accuracy.Notably,the combination of the cross-polarization imaging technique with our proposed algorithm enables the clear observation of the SCJ boundary.These findings emphasize the potential of our approach in enhancing the accuracy and effectiveness of polarized colposcopy for evaluating cervical tissue.展开更多
The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for...The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain(SGT)of India and characterize these rocks through field,petrological,geo-chemical,and isotope geochronological studies.The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass.Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism.The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma,thus corresponding to the Valanginian Age of the Early Cretaceous Period.We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.展开更多
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c...The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.展开更多
The use of water resources for energy generation has become increasingly prevalent,encompassing the conversion of kinetic energy from streams,tides,and waves into renewable electrical power.Water energy sources offer ...The use of water resources for energy generation has become increasingly prevalent,encompassing the conversion of kinetic energy from streams,tides,and waves into renewable electrical power.Water energy sources offer numerous benefits,including widespread availability,stability,and the absence of carbon dioxide and other greenhouse gas emissions,making them a clean and environmentally friendly form of energy.In this work,we develop a droplet-based liquid-solid triboelectric nanogenerator(LS-TENG)using sophisticatedly designed inflatable columnar structures with inner and outer dual-electrodes.This device can be utilized to harvest both the internal droplet-rolling mechanical energy and the external droplet-falling mechanical energy,capable of being assembled into various structures for versatile applications.The design incorporates a combined structure of both internal and external TENG to optimize output performance via multiple energy harvesting strategies.The internal structure features a dual-electrode columnar-shaped LS-TENG,designed to harvest fluid kinetic energy from water droplets.By leveraging the back-and-forth motion of a small amount of water within the air column,mechanical energy can be readily collected,achieving a maximum mass power density of 9.02 W·Kg^(−1)and an energy conversion efficiency of 10.358%.The external component is a droplet-based LS-TENG,which utilizes a double-layer capacitor switch effect elucidated with an equivalent circuit model.Remarkably,without the need for pre-charging,a single droplet can generate over 140 V of high voltage,achieving a maximum power density of 7.35 W·m^(−2)and an energy conversion efficiency of 22.058%.The combined LS-TENG with a sophisticated inflatable columnar structure can simultaneously collect multiple types of energy with high efficacy,exhibiting great significance in potential applications such as TENG aeration rollers,inflatable lifejacket,wind energy harvesting,TENG tents,and green houses.展开更多
Additively manufactured(AM)metals exhibit highly complex microstructures,particularly in terms of grain morphology which typically features heterogeneous grain size distribution,irregular and anisotropic grain shapes,...Additively manufactured(AM)metals exhibit highly complex microstructures,particularly in terms of grain morphology which typically features heterogeneous grain size distribution,irregular and anisotropic grain shapes,and the so-called columnar grains.The conventional morphological descriptors based on grain shape idealization are generally inadequate for representing complex and anisotropic grain mor-phology of AM microstructures.The primary aspect of microstructural grain morphology is the state of grain boundary spacing or grain size whose effect on the mechanical response is known to be cru-cial.In this paper,we formally introduce the notion of axial grain size from which we derive mean axial grain size,effective grain size,and grain size anisotropy as robust morphological descriptors ca-pable of effectively representing highly complex grain morphologies.We instantiated a discrete sample of polycrystalline aggregate as a representative volume element(RVE)featuring random crystallographic orientation and misorientation distributions.However,the instantiated RVE incorporates the typical mor-phological features of AM microstructures including distinctive grain size heterogeneity and anisotropic grain size owing to its pronounced columnar grain morphology.We ensured that any anisotropy ob-served in the macroscopic mechanical response of the instantiated sample primarily originates from its underlying anisotropic grain size.The RVE was then employed for mesoscale full-field crystal plasticity simulations corresponding to uniaxial tensile deformation along various axes via a spectral solver and a physics-based crystal plasticity constitutive model which was developed,calibrated,and validated in ear-lier studies.Through the numerical analyses,we isolated the contribution of anisotropic grain size to the anisotropy in the mechanical response of polycrystalline aggregates,particularly those with the charac-teristic complex grain morphology of AM metals.This contribution can be described by an inverse square relation.展开更多
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
From the ethyl acetate extract of Murraya koenegii (Rutaceae) leaves, isomahanine (1) and mahanine (2) were isolated that showed antibacterial activity towards Flavobacterium columnare and Streptococcus iniae which ca...From the ethyl acetate extract of Murraya koenegii (Rutaceae) leaves, isomahanine (1) and mahanine (2) were isolated that showed antibacterial activity towards Flavobacterium columnare and Streptococcus iniae which caused columnaris disease and streptococcosis respectively. Isomahanine was found to have the strongest activity against F. columnare (isolate ALM-00-173) and S. iniae (isolate LA94-426) based on 24-h 50% inhibition concentration (IC50) and minimum inhibition concentration (MIC). Although compound (7), a nicotinamide isolated from Amyris texana had the lowest MIC (2.8 ± 0 mg/L) of any of the test compounds against F. columnare, the 24-h IC50 of 14.8 ± 0.6 mg/L was higher than that of isomahanine and subsequently the 24-h IC50 RDC values for (7) were almost a magnitude of order higher than those obtained for isomahanine. Isomahanine also had the strongest activity against S. iniae, with a 24-h IC50 of 1.3 ± 0.1 mg/L and MIC of 3.5 ± 0 mg/L, respectively.展开更多
Columnaris (caused by Flavobacterium columnare) is one of the most common bacterial diseases affecting the pond-raised channel catfish (Ictalurus punctatus) in the southeastern United States of America resulting in an...Columnaris (caused by Flavobacterium columnare) is one of the most common bacterial diseases affecting the pond-raised channel catfish (Ictalurus punctatus) in the southeastern United States of America resulting in annual losses of millions of dollars. As part of our continuing effort to discover environmentally benign compounds for the control of columnaris disease, acyl derivatives of phloroglucinol were synthesized and tested against F. columnare using a rapid bioassay. Among the analogs that were tested, diacyl analogs showed very high antibacterial activity against F. columnare in the laboratory bioassay. Diisovaleryl and diisobutyryl analogs were found to have the strongest activity against F. columnare (isolate ALM-00-173) based on 24-h 50% inhibitory concentration (IC50) and minimum inhibitory concentration (MIC). Diisovaleryl and diisobutyryl analogs had IC50 values 0.82 mg/L and 0.80 mg/L, respectively, whereas the drug control florfenicol had an IC50 value of 0.81 mg/L. Diisovaleryl and diisobutyryl analogs also had 24-h relative-to- drug-control IC50 values around 1.0 indicating activities similar to florfenicol, which is included in medicated feed and is one of the current management approach for columnaris.展开更多
The West Junggar of the western Central Asian Orogenic Belt is one of the typical regions in the term of ocean subduction, contraction and continental growth in the Late Paleozoic. However, it is still controversial o...The West Junggar of the western Central Asian Orogenic Belt is one of the typical regions in the term of ocean subduction, contraction and continental growth in the Late Paleozoic. However, it is still controversial on the exact time of ocean-continent transition so far. This study investigates rhyolites with columnar joint in the West Junggar for the first time.Based on zircon U-Pb dating, we determined that the ages of the newly-discovered rhyolites are between 303.6 and 294.5 Ma, belonging to Late Carboniferous–Early Permian, which is the oldest rhyolite with columnar joint preserved in the world at present. Geochemical results show that the characteristics of the major element compositions include a high content of SiO_2(75.78–79.20 wt%) and a moderate content of Al_2O_3(12.21–13.19 wt%). The total alkali content(K_2O +Na_2O) is 6.14–8.05 wt%, among which K_2O is 2.09–4.72 wt% and the rate of K_2O/Na_2O is 0.38–3.05. Over-based minerals such as Ne, Lc, and Ac do not appear. The contents of TiO_2(0.09–0.24 wt%), CaO(0.15–0.99 wt%) and MgO(0.06–0.18 wt%) are low. A/CNK=0.91–1.68, A/NK=1.06–1.76, and as such, these are associated with the quasi-aluminum-weak peraluminous high potassium calc-alkaline and some calc-alkaline magma series. These rhyolites show a significant negative Eu anomaly with relative enrichment of LREE and LILE(Rb, Ba, Th, U, K) and depletion of Sr, HREE and HFSE(Nb, Ta, Ti, P). These rhyolites also have the characteristics of an A2-type granite, similar to the Miaoergou batholith,which indicates they both were affected by post-orogenic extension. Combining petrological, zircon U-Pb dating and geochemical characteristics of the rhyolites, we conclude that the specific time of ocean-continent transition of the West Junggar is the Late Carboniferous–Early Permian.展开更多
A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduce...A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduced. The ECP was applied to different stages of the solidification. The results showed that the application of the ECP in both the initial stage (the thickness of solidified shell reached 2 mm approximately) and the late stage (the thickness of solidified shell reached 14 mm approximately) of solidification can promote the columnar to equiaxed transition (CET). The analysis showed that during solidification, a large number of nuclei around the upper surface fell off due to ECP, which subsequently showered on the melt and impinged the growth front of the columnar crystal. Therefore, the CEToccurred. In addition, this method was also employed to influence the solidification process of bearing steel, and the results showed that the structure was changed from columnar crystal to equiaxed crystal, indicating that ECP can enhance the homogeneity of structure and composition of bearing steel.展开更多
From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the A...From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.展开更多
Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly ca...Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly caused by electric current, the mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid liquid interface was studied. The following conclusions can be drawn that: 1) under sub rapid solidification condition, increasing electric current density will improve the stability of S L interface, thus decreasing the columnar dendrite spacing; 2)there are two ways by which the increase of electric current decreases the columnar dendrite spacing, one is promoting the splitting of the protruding tips at the S L interface, the other is promoting the forming of new convex parts at the bottom of the concave interface.[展开更多
The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. I...The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.展开更多
According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large fini...According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.展开更多
Columnar nanocrystalline aluminum nitride(cnc-AlN) thin films with(002) orientation and uniform texture have been deposited successfully on large silicon wafers by RF reactive magnetron sputtering.At the optimum sputt...Columnar nanocrystalline aluminum nitride(cnc-AlN) thin films with(002) orientation and uniform texture have been deposited successfully on large silicon wafers by RF reactive magnetron sputtering.At the optimum sputtering parameters, the deposited cnc-AlN thin films show a c-axis preferred orientation with a crystallite size of about 28 nm and surface roughness(RMS) of about 1.29 nm. The cnc-AlN thin films were well transparent with an optical band gap about 4.8 e V, and the residual compressive stress and the defect density in the film have been revealed by Ramon spectroscopy. Moreover, piezoelectric performances of the cnc-AlN thin films executed effectively in a film bulk acoustic resonator structure.展开更多
Columnar grains in cast slabs of electrical steel show strong anisotropy in grain orientation and morphology and thus influence the subsequent microstructure and texture after hot rolling significantly. The texture ev...Columnar grains in cast slabs of electrical steel show strong anisotropy in grain orientation and morphology and thus influence the subsequent microstructure and texture after hot rolling significantly. The texture evolution of hot rolled sheets containing initial columnar grains with their 〈100〉 directions approximately parallel to the rolling direction (RD), transverse direction (TD) and normal direction (ND) of the hot rolled sheets was investigated by using EBSD technique. The results indicated that, whatever the initial texture of the columnar grains was, typical Goss, brass-type and copper-type shear texture component could develop in shear-deformed surface region. The copper-type texture formed under the maximum shearing force with the fine, sheared or dynamically recrystallized grains, and Goss grains were mainly elongated and deformed grains, while brass grains behaved between them. Ad- ditionally, the rotating relationship of the three types of shear textures was different due to the restriction of grain boundaries. In homogenously deformed center region, the RD sample contained more {112}〈110^-〉 grains, and TD sample was covered by {100} textures such as {100}〈011〉 and {100}〈021〉 with coarse grains, while the ND sample developed many {100}〈001〉 grains which were attributed to more {100} grains in the initial sample. Re- markable texture transition occurred on both sides of grain boundaries when {110} grains were adjacent to mfiber texture grains. It was found that significant texture gradient and preferred distribution of rotating axis existed in the soft orientation grains on the α- fiber when the grains neighbored hard grains on γ-fiber.展开更多
The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of...The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.展开更多
To evaluate the columnar jointed basalts in the dam site of Baihetan hydropower station in southwest China, we developed a basic conceptual model of single jointed rock mass. Considering that the rock mass deformation...To evaluate the columnar jointed basalts in the dam site of Baihetan hydropower station in southwest China, we developed a basic conceptual model of single jointed rock mass. Considering that the rock mass deformation consists of rock block deformation and joints deformation, the linear mechanical characteristics of the cell (including the elastic joints and the nonlinear mechanical behaviors of the cell) with a combined frictional-elastic interface were analyzed. We developed formulas to calculate the rock block deformation, which can be adapted for multiple jointed rock mass and columnar jointed basalts. The formulas are effective in calculating the equivalent modulus of multiple jointed rock mass, and precisely reveal the anisotropic properties of columnar jointed basalts. Furthermore, the in situ rigid bearing plate tests were analyzed and calculated, and the types of loading-unloading curves and the equivalent modulus along different directions of columnar jointed basalts were obtained. The analytical results are in close compliance with the test results.展开更多
Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume cont...Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.展开更多
文摘The careful observation and evaluation of the squamocolumnar junction(SCJ)are essential requirements in colposcopy procedures.While traditional colposcopes with visible light offer high resolution and sensitivity,the presence of glare patterns on the cervix limits the visualization of deeper tissue features.Cross-polarization imaging,on the other hand,overcomes this limitation by effectively removing glare and providing greater optical penetration depth to noninvasively examine subsurface tissue structures.In this study,we present the potential of polarized light in enhancing diagnostics through cross-polarization imaging for the identification and contrast enhancement of squamous and columnar epithelium(CE)in cases of cervical ectropion.Our results demonstrate that polarized light colposcopy offers valuable diagnostic information that complements traditional colposcopy.By effectively reducing glare and improving visibility during cervical examinations,polarized light colposcopy proves to be a useful tool.Furthermore,we introduce a novel method that practically enhances the contrast ratio(CR)between columnar and squamous epithelium(SE)in colposcopic images.This method significantly increases the contrast between these tissue types,facilitating clearer differentiation and improving diagnostic accuracy.Notably,the combination of the cross-polarization imaging technique with our proposed algorithm enables the clear observation of the SCJ boundary.These findings emphasize the potential of our approach in enhancing the accuracy and effectiveness of polarized colposcopy for evaluating cervical tissue.
基金supported by the“Startup Grant for the University Teachers”of the University of Kerala.
文摘The role of mantle plume in the final stages of rifting of the East Gondwana crustal fragments remains equivocal with only limited evidence so far reported from the southern part of Peninsular India.Here,we report for the first time a suite of columnar basalts from the Mesoarchean Coorg Block in the Southern Granulite Terrain(SGT)of India and characterize these rocks through field,petrological,geo-chemical,and isotope geochronological studies.The basalts show porphyritic texture with phenocrysts of pyroxene and plagioclase embedded in fine groundmass.Geochemical data reveal tholeiitic flood basalt affinity with affinities of plume-related magmatism.The zircon U-Pb data of the rocks yield a weighted mean age of 137 Ma,thus corresponding to the Valanginian Age of the Early Cretaceous Period.We suggest the possible geochemical affinity of the studied rocks Kerguelen plume basalts which provide new insights into magmatism associated with the final stages of East Gondwana rifting.
基金Projects(42307192,41831278)supported by the National Natural Science Foundation of ChinaProject(CKWV20231175/KY)supported by the CRSRI Open Research Program,China。
文摘The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method.
基金supported by the National Key Research and Development Program of China(2023YFB3208102,2021YFB3200304)the National Natural Science Foundation of China(52073031)+2 种基金Beijing Nova Program(Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the‘Hundred Talents Program’of the Chinese Academy of Sciences.
文摘The use of water resources for energy generation has become increasingly prevalent,encompassing the conversion of kinetic energy from streams,tides,and waves into renewable electrical power.Water energy sources offer numerous benefits,including widespread availability,stability,and the absence of carbon dioxide and other greenhouse gas emissions,making them a clean and environmentally friendly form of energy.In this work,we develop a droplet-based liquid-solid triboelectric nanogenerator(LS-TENG)using sophisticatedly designed inflatable columnar structures with inner and outer dual-electrodes.This device can be utilized to harvest both the internal droplet-rolling mechanical energy and the external droplet-falling mechanical energy,capable of being assembled into various structures for versatile applications.The design incorporates a combined structure of both internal and external TENG to optimize output performance via multiple energy harvesting strategies.The internal structure features a dual-electrode columnar-shaped LS-TENG,designed to harvest fluid kinetic energy from water droplets.By leveraging the back-and-forth motion of a small amount of water within the air column,mechanical energy can be readily collected,achieving a maximum mass power density of 9.02 W·Kg^(−1)and an energy conversion efficiency of 10.358%.The external component is a droplet-based LS-TENG,which utilizes a double-layer capacitor switch effect elucidated with an equivalent circuit model.Remarkably,without the need for pre-charging,a single droplet can generate over 140 V of high voltage,achieving a maximum power density of 7.35 W·m^(−2)and an energy conversion efficiency of 22.058%.The combined LS-TENG with a sophisticated inflatable columnar structure can simultaneously collect multiple types of energy with high efficacy,exhibiting great significance in potential applications such as TENG aeration rollers,inflatable lifejacket,wind energy harvesting,TENG tents,and green houses.
基金support of the German Federal Ministry of Education and Research within the NanoMatFutur project“MatAM-Design of additively manufactured highperformance alloys for automotive applications”(Project ID:03XP0264).
文摘Additively manufactured(AM)metals exhibit highly complex microstructures,particularly in terms of grain morphology which typically features heterogeneous grain size distribution,irregular and anisotropic grain shapes,and the so-called columnar grains.The conventional morphological descriptors based on grain shape idealization are generally inadequate for representing complex and anisotropic grain mor-phology of AM microstructures.The primary aspect of microstructural grain morphology is the state of grain boundary spacing or grain size whose effect on the mechanical response is known to be cru-cial.In this paper,we formally introduce the notion of axial grain size from which we derive mean axial grain size,effective grain size,and grain size anisotropy as robust morphological descriptors ca-pable of effectively representing highly complex grain morphologies.We instantiated a discrete sample of polycrystalline aggregate as a representative volume element(RVE)featuring random crystallographic orientation and misorientation distributions.However,the instantiated RVE incorporates the typical mor-phological features of AM microstructures including distinctive grain size heterogeneity and anisotropic grain size owing to its pronounced columnar grain morphology.We ensured that any anisotropy ob-served in the macroscopic mechanical response of the instantiated sample primarily originates from its underlying anisotropic grain size.The RVE was then employed for mesoscale full-field crystal plasticity simulations corresponding to uniaxial tensile deformation along various axes via a spectral solver and a physics-based crystal plasticity constitutive model which was developed,calibrated,and validated in ear-lier studies.Through the numerical analyses,we isolated the contribution of anisotropic grain size to the anisotropy in the mechanical response of polycrystalline aggregates,particularly those with the charac-teristic complex grain morphology of AM metals.This contribution can be described by an inverse square relation.
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
文摘From the ethyl acetate extract of Murraya koenegii (Rutaceae) leaves, isomahanine (1) and mahanine (2) were isolated that showed antibacterial activity towards Flavobacterium columnare and Streptococcus iniae which caused columnaris disease and streptococcosis respectively. Isomahanine was found to have the strongest activity against F. columnare (isolate ALM-00-173) and S. iniae (isolate LA94-426) based on 24-h 50% inhibition concentration (IC50) and minimum inhibition concentration (MIC). Although compound (7), a nicotinamide isolated from Amyris texana had the lowest MIC (2.8 ± 0 mg/L) of any of the test compounds against F. columnare, the 24-h IC50 of 14.8 ± 0.6 mg/L was higher than that of isomahanine and subsequently the 24-h IC50 RDC values for (7) were almost a magnitude of order higher than those obtained for isomahanine. Isomahanine also had the strongest activity against S. iniae, with a 24-h IC50 of 1.3 ± 0.1 mg/L and MIC of 3.5 ± 0 mg/L, respectively.
文摘Columnaris (caused by Flavobacterium columnare) is one of the most common bacterial diseases affecting the pond-raised channel catfish (Ictalurus punctatus) in the southeastern United States of America resulting in annual losses of millions of dollars. As part of our continuing effort to discover environmentally benign compounds for the control of columnaris disease, acyl derivatives of phloroglucinol were synthesized and tested against F. columnare using a rapid bioassay. Among the analogs that were tested, diacyl analogs showed very high antibacterial activity against F. columnare in the laboratory bioassay. Diisovaleryl and diisobutyryl analogs were found to have the strongest activity against F. columnare (isolate ALM-00-173) based on 24-h 50% inhibitory concentration (IC50) and minimum inhibitory concentration (MIC). Diisovaleryl and diisobutyryl analogs had IC50 values 0.82 mg/L and 0.80 mg/L, respectively, whereas the drug control florfenicol had an IC50 value of 0.81 mg/L. Diisovaleryl and diisobutyryl analogs also had 24-h relative-to- drug-control IC50 values around 1.0 indicating activities similar to florfenicol, which is included in medicated feed and is one of the current management approach for columnaris.
基金supported by the China Geological Survey (grant numbers DD20160083 and DD20160344-05)the National Key Research and Development Program of China (grant numbers 2018YFC0603701)Fundamental Research Funds for Central Public Welfare Research Institutes (grant numbers CAGS-YWF201706)
文摘The West Junggar of the western Central Asian Orogenic Belt is one of the typical regions in the term of ocean subduction, contraction and continental growth in the Late Paleozoic. However, it is still controversial on the exact time of ocean-continent transition so far. This study investigates rhyolites with columnar joint in the West Junggar for the first time.Based on zircon U-Pb dating, we determined that the ages of the newly-discovered rhyolites are between 303.6 and 294.5 Ma, belonging to Late Carboniferous–Early Permian, which is the oldest rhyolite with columnar joint preserved in the world at present. Geochemical results show that the characteristics of the major element compositions include a high content of SiO_2(75.78–79.20 wt%) and a moderate content of Al_2O_3(12.21–13.19 wt%). The total alkali content(K_2O +Na_2O) is 6.14–8.05 wt%, among which K_2O is 2.09–4.72 wt% and the rate of K_2O/Na_2O is 0.38–3.05. Over-based minerals such as Ne, Lc, and Ac do not appear. The contents of TiO_2(0.09–0.24 wt%), CaO(0.15–0.99 wt%) and MgO(0.06–0.18 wt%) are low. A/CNK=0.91–1.68, A/NK=1.06–1.76, and as such, these are associated with the quasi-aluminum-weak peraluminous high potassium calc-alkaline and some calc-alkaline magma series. These rhyolites show a significant negative Eu anomaly with relative enrichment of LREE and LILE(Rb, Ba, Th, U, K) and depletion of Sr, HREE and HFSE(Nb, Ta, Ti, P). These rhyolites also have the characteristics of an A2-type granite, similar to the Miaoergou batholith,which indicates they both were affected by post-orogenic extension. Combining petrological, zircon U-Pb dating and geochemical characteristics of the rhyolites, we conclude that the specific time of ocean-continent transition of the West Junggar is the Late Carboniferous–Early Permian.
基金Item Sponsored by National Natural Science Foundation of China(50674064,50734008)
文摘A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduced. The ECP was applied to different stages of the solidification. The results showed that the application of the ECP in both the initial stage (the thickness of solidified shell reached 2 mm approximately) and the late stage (the thickness of solidified shell reached 14 mm approximately) of solidification can promote the columnar to equiaxed transition (CET). The analysis showed that during solidification, a large number of nuclei around the upper surface fell off due to ECP, which subsequently showered on the melt and impinged the growth front of the columnar crystal. Therefore, the CEToccurred. In addition, this method was also employed to influence the solidification process of bearing steel, and the results showed that the structure was changed from columnar crystal to equiaxed crystal, indicating that ECP can enhance the homogeneity of structure and composition of bearing steel.
基金Projects(50911130366, 50979030) supported by the National Natural Science Foundation of China
文摘From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.
文摘Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly caused by electric current, the mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid liquid interface was studied. The following conclusions can be drawn that: 1) under sub rapid solidification condition, increasing electric current density will improve the stability of S L interface, thus decreasing the columnar dendrite spacing; 2)there are two ways by which the increase of electric current decreases the columnar dendrite spacing, one is promoting the splitting of the protruding tips at the S L interface, the other is promoting the forming of new convex parts at the bottom of the concave interface.[
基金the financial support from the International Partnership Program of Chinese Academy of Sciences(Grant No.115242KYSB20160017)the Key Project of Natural Science Foundation of China(Grant No.11232014)National Natural Science Foundation of China(Grant No.51379202)
文摘The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.
文摘According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.
文摘Columnar nanocrystalline aluminum nitride(cnc-AlN) thin films with(002) orientation and uniform texture have been deposited successfully on large silicon wafers by RF reactive magnetron sputtering.At the optimum sputtering parameters, the deposited cnc-AlN thin films show a c-axis preferred orientation with a crystallite size of about 28 nm and surface roughness(RMS) of about 1.29 nm. The cnc-AlN thin films were well transparent with an optical band gap about 4.8 e V, and the residual compressive stress and the defect density in the film have been revealed by Ramon spectroscopy. Moreover, piezoelectric performances of the cnc-AlN thin films executed effectively in a film bulk acoustic resonator structure.
基金Item Sponsored by National Natural Science Foundation of China(51071024)
文摘Columnar grains in cast slabs of electrical steel show strong anisotropy in grain orientation and morphology and thus influence the subsequent microstructure and texture after hot rolling significantly. The texture evolution of hot rolled sheets containing initial columnar grains with their 〈100〉 directions approximately parallel to the rolling direction (RD), transverse direction (TD) and normal direction (ND) of the hot rolled sheets was investigated by using EBSD technique. The results indicated that, whatever the initial texture of the columnar grains was, typical Goss, brass-type and copper-type shear texture component could develop in shear-deformed surface region. The copper-type texture formed under the maximum shearing force with the fine, sheared or dynamically recrystallized grains, and Goss grains were mainly elongated and deformed grains, while brass grains behaved between them. Ad- ditionally, the rotating relationship of the three types of shear textures was different due to the restriction of grain boundaries. In homogenously deformed center region, the RD sample contained more {112}〈110^-〉 grains, and TD sample was covered by {100} textures such as {100}〈011〉 and {100}〈021〉 with coarse grains, while the ND sample developed many {100}〈001〉 grains which were attributed to more {100} grains in the initial sample. Re- markable texture transition occurred on both sides of grain boundaries when {110} grains were adjacent to mfiber texture grains. It was found that significant texture gradient and preferred distribution of rotating axis existed in the soft orientation grains on the α- fiber when the grains neighbored hard grains on γ-fiber.
基金This work was supported by the Fundamental Research Funds for the Central Universities,the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_0487)the National Natural Science Foundation of China(Grant Nos.41831278,and 51579081).
文摘The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.
基金Project (Nos. 50911130366 and 2011CB013504) supported by the National Natural Science Foundation of Chinathe Postdoctoral Advanced Research Programs Class Ⅱ of Zhejiang Province (No. BSH1302013), China
文摘To evaluate the columnar jointed basalts in the dam site of Baihetan hydropower station in southwest China, we developed a basic conceptual model of single jointed rock mass. Considering that the rock mass deformation consists of rock block deformation and joints deformation, the linear mechanical characteristics of the cell (including the elastic joints and the nonlinear mechanical behaviors of the cell) with a combined frictional-elastic interface were analyzed. We developed formulas to calculate the rock block deformation, which can be adapted for multiple jointed rock mass and columnar jointed basalts. The formulas are effective in calculating the equivalent modulus of multiple jointed rock mass, and precisely reveal the anisotropic properties of columnar jointed basalts. Furthermore, the in situ rigid bearing plate tests were analyzed and calculated, and the types of loading-unloading curves and the equivalent modulus along different directions of columnar jointed basalts were obtained. The analytical results are in close compliance with the test results.
基金Projects(51621006,51779251)supported by the National Natural Science Foundation of China。
文摘Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.