Due to the serious harm of diabetes to human health,development of sensitive assays for glucose level is of high significance for early prevention and treatment of diabetes.Currently,most conventional enzyme-based glu...Due to the serious harm of diabetes to human health,development of sensitive assays for glucose level is of high significance for early prevention and treatment of diabetes.Currently,most conventional enzyme-based glucose sensors suffer from high cost and low stability due to the inherent defects of natural enzymes.Herein,we develop a pure nanozyme-based glucose detection method using Ag@Au core/shell triangular nanoplates(TNPs),which combines glucose oxidase(GOD)-and horseradish peroxidase(HRP)-like activities of the Au shell and inherent plasmonic properties of Ag TNPs.The sensing mechanism is based on the fact that the Au shell possessed GOD-like activity,enabling the oxidation of glucose to produce H2O2,which can further etch the silver core,leading to the decrease of absorbance at 800 nm and the color change from blue to colorless.Compared with the previous nanozymes-based glucose sensors,our method avoids the use of enzymes and organic chromogenic agent.Moreover,the stability of the Ag@Au core/shell TNPs is much better than that of Ag TNPs due to the protection by the coating of the Au shell.This method was successfully applied to the detection of urine samples from patients with diabetes,indicating its practical applicability for real sample analysis.展开更多
The angle dependence of photonic crystals(PCs)dramatically limits their practical applications in the colorimetrical sensing of humidity and volatile organic compound(VOC)vapors.In addition,it is challenging for inver...The angle dependence of photonic crystals(PCs)dramatically limits their practical applications in the colorimetrical sensing of humidity and volatile organic compound(VOC)vapors.In addition,it is challenging for inverse opal PCs to colorimetrically distinguish between vapors with similar refractive indices.Different from the mechanism of PC-based sensors,here,we report an angle-independent polyacrylamide(PAAm)organogel structural color film based on the mechanisms of retroreflection,total internal reflection(TIR)and interference with a shape similar to a single-sided“egg waffle”.During the process of responding to humidity and VOC vapors,the color of the film remains angle-independent in the normal angle range of 0°to 45°under coaxial illumination and observation conditions.At the same time,the film can colorimetrically distinguish between vapors with similar refractive indices,such as methanol and ethanol,which is mainly due to the differences in their polarity and solubility parameters.The film shows good stability,reversibility and selectivity when exposed to vapors.A colorimetric sensor with a new response mechanism is proposed and has the potential to effectively distinguish between vapors with similar refractive indices.Furthermore,this responsive retroreflective structural color film(RRSCF)provides a universal strategy to develop targeted angle-independent structural color sensors by selecting optimized materials.展开更多
Volatile organic amines and biogenic amines produced by the amino acid degradation can undeniably affect the food quality and safety,and thus causes serious health problems.It is of great urgency to exploit reliable a...Volatile organic amines and biogenic amines produced by the amino acid degradation can undeniably affect the food quality and safety,and thus causes serious health problems.It is of great urgency to exploit reliable and sensitive detection methods for amines to ensure food safety and public health.The fluorescent and colorimetric sensors offer simple and robust means to monitor amines with high sensitivity and selectivity,quick response,facile operation and low cost.Herein,we briefly review the past five years’progress in fluorescent and colorimetric sensing for monitoring organic and biogenic amines in food.The architectures of sensing materials ranging from small molecules to frameworks to polymers or self-assembly materials have been highlighted.Moreover,the main challenges and perspective of various sensing materials are presented to inspire further research and development.In the end,the development trend of new sensing materials and devices for real-time monitoring of food quality is also forecasted.This review is expected spur more research interest in design of novel amine sensing materials for future application transformation research.展开更多
In this study,the halogen exchange reactions are investigated between KI or methylamine iodide in aqueous solution and CsPbBr_(3)NCs in toluene.The mass transfer process on the interface between water and toluene affe...In this study,the halogen exchange reactions are investigated between KI or methylamine iodide in aqueous solution and CsPbBr_(3)NCs in toluene.The mass transfer process on the interface between water and toluene affects the halogen exchange time and e fficiency.Stirring and heating can effectively improve the halogen exchange e fficiency and increases the sensing sensitivity.The photoluminescence wavelength shift of CsPbBr_(3)NCs shows good linear relationship with the concentration of I-in the range from 0 to 20 nmol/L with the detection limit of 0.2 nmol/L I^(-).Taking H_(2)O_(2)as a typical water-soluble oxide,the method is applied to the colorimetric sensing of H_(2)O_(2)in water solution.After the optimization of sensing conditions,the obvious wavelength shift could be observed with the different concentration range of H_(2)O_(2).A good linear relationship between the wavelength shift and the H_(2)O_(2)concentration from 0 to 1.0 mmol/L with the detection limit of 0.05 mmol/L H_(2)O_(2)could be found.展开更多
The preparation of silver nanoparticles(AgNPs)with microbe or plant tissues as bio-template offers green approach,while it suffers from low harvest and purification is needed.Herein,we propose a facile protocol for on...The preparation of silver nanoparticles(AgNPs)with microbe or plant tissues as bio-template offers green approach,while it suffers from low harvest and purification is needed.Herein,we propose a facile protocol for one-pot preparation of AgNPs using M13 phage as bio-template by simply mixing AgN03 solution with alkali M13 phage.In the obtained AgNPs-M13 phage composite,Cr(Ⅲ)selectively coordinates with the amino residues on phage surface and leads to the aggregation of AgNPs through the bridging of M13 phages.This makes it feasible for colorimetric sensing of Cr(Ⅲ)by measuring the absorbance ratio of AgNPs at 600 and 405 nm,which provides a LOD of 14 nmol/L.The composite also showed favorable bactericidal activity for both Gram-positive and Gram-negative bacteria,making it a promising candidate as antibacterial film in chromium-containing dental alloys and meanwhile serve as a sensing probe for monitoring the corrosion of the dental alloys.展开更多
Recent developments in the biochemical and medicinal industries have been heavily focused on producing affordable glucose biosensors due to the condi nuous annual increase of diabetic patients worldwide.The devel-opme...Recent developments in the biochemical and medicinal industries have been heavily focused on producing affordable glucose biosensors due to the condi nuous annual increase of diabetic patients worldwide.The devel-opment of a fast,accurate,and reliable glucose sensor will increase confidence in controlling di abetes mellitus and its assoclated health complications among the diabetic community.Electraspinning is a versatile method that can produce complex nanofbrous assemblies with attractiwe and functional characteristics from varlous polymers.Electrospun nanofibers demonstrated high efficiency in the immobilization of biological molecules,which can improve the sensing performance further.Integr ation of polymer electrospun nanofibers with metal nanoparticles,metal oxde or transition metal in producing nanobiocomposites is also a highly popul ar approach in the past few years.This report presents the current progress and research trends of the technique,focusing on varous ma-terials and fabrication strategies used to produce biosensing interfaces.This helps readers decide the suitable approach in designing highly sensitive,selective,fast,and inexpensive glucose sensors.展开更多
基金supported by the National Natural Science Foundation of China(No.21876206)the Fundamental Research Funds for the Central Universities(No.18CX02037A)。
文摘Due to the serious harm of diabetes to human health,development of sensitive assays for glucose level is of high significance for early prevention and treatment of diabetes.Currently,most conventional enzyme-based glucose sensors suffer from high cost and low stability due to the inherent defects of natural enzymes.Herein,we develop a pure nanozyme-based glucose detection method using Ag@Au core/shell triangular nanoplates(TNPs),which combines glucose oxidase(GOD)-and horseradish peroxidase(HRP)-like activities of the Au shell and inherent plasmonic properties of Ag TNPs.The sensing mechanism is based on the fact that the Au shell possessed GOD-like activity,enabling the oxidation of glucose to produce H2O2,which can further etch the silver core,leading to the decrease of absorbance at 800 nm and the color change from blue to colorless.Compared with the previous nanozymes-based glucose sensors,our method avoids the use of enzymes and organic chromogenic agent.Moreover,the stability of the Ag@Au core/shell TNPs is much better than that of Ag TNPs due to the protection by the coating of the Au shell.This method was successfully applied to the detection of urine samples from patients with diabetes,indicating its practical applicability for real sample analysis.
基金supported by National Key Research and Development Program of China(Nos.2017YFA0204600,2018YFE0201701)National Natural Science Foundation of China(No.51673041).
文摘The angle dependence of photonic crystals(PCs)dramatically limits their practical applications in the colorimetrical sensing of humidity and volatile organic compound(VOC)vapors.In addition,it is challenging for inverse opal PCs to colorimetrically distinguish between vapors with similar refractive indices.Different from the mechanism of PC-based sensors,here,we report an angle-independent polyacrylamide(PAAm)organogel structural color film based on the mechanisms of retroreflection,total internal reflection(TIR)and interference with a shape similar to a single-sided“egg waffle”.During the process of responding to humidity and VOC vapors,the color of the film remains angle-independent in the normal angle range of 0°to 45°under coaxial illumination and observation conditions.At the same time,the film can colorimetrically distinguish between vapors with similar refractive indices,such as methanol and ethanol,which is mainly due to the differences in their polarity and solubility parameters.The film shows good stability,reversibility and selectivity when exposed to vapors.A colorimetric sensor with a new response mechanism is proposed and has the potential to effectively distinguish between vapors with similar refractive indices.Furthermore,this responsive retroreflective structural color film(RRSCF)provides a universal strategy to develop targeted angle-independent structural color sensors by selecting optimized materials.
基金funding support provided by the Key Scientific and Technological Project of Henan province(No.212102210549)Natural Science Foundation of Henan Province(No.222300420501)the Key Scientific Research Project of Higher Education of Henan Province(No.22A430007).
文摘Volatile organic amines and biogenic amines produced by the amino acid degradation can undeniably affect the food quality and safety,and thus causes serious health problems.It is of great urgency to exploit reliable and sensitive detection methods for amines to ensure food safety and public health.The fluorescent and colorimetric sensors offer simple and robust means to monitor amines with high sensitivity and selectivity,quick response,facile operation and low cost.Herein,we briefly review the past five years’progress in fluorescent and colorimetric sensing for monitoring organic and biogenic amines in food.The architectures of sensing materials ranging from small molecules to frameworks to polymers or self-assembly materials have been highlighted.Moreover,the main challenges and perspective of various sensing materials are presented to inspire further research and development.In the end,the development trend of new sensing materials and devices for real-time monitoring of food quality is also forecasted.This review is expected spur more research interest in design of novel amine sensing materials for future application transformation research.
基金funded by National Natural Science Foundations of China(21876141)the Shenzhen Science and Technology Project(JCYJ20180306172823786)
文摘In this study,the halogen exchange reactions are investigated between KI or methylamine iodide in aqueous solution and CsPbBr_(3)NCs in toluene.The mass transfer process on the interface between water and toluene affects the halogen exchange time and e fficiency.Stirring and heating can effectively improve the halogen exchange e fficiency and increases the sensing sensitivity.The photoluminescence wavelength shift of CsPbBr_(3)NCs shows good linear relationship with the concentration of I-in the range from 0 to 20 nmol/L with the detection limit of 0.2 nmol/L I^(-).Taking H_(2)O_(2)as a typical water-soluble oxide,the method is applied to the colorimetric sensing of H_(2)O_(2)in water solution.After the optimization of sensing conditions,the obvious wavelength shift could be observed with the different concentration range of H_(2)O_(2).A good linear relationship between the wavelength shift and the H_(2)O_(2)concentration from 0 to 1.0 mmol/L with the detection limit of 0.05 mmol/L H_(2)O_(2)could be found.
基金Financial support from the National Natural Science Foundation of China (Nos.21874014,21727811,21675019,21605161)the Fundamental Research Funds for the Central Universities (No. N180505021)
文摘The preparation of silver nanoparticles(AgNPs)with microbe or plant tissues as bio-template offers green approach,while it suffers from low harvest and purification is needed.Herein,we propose a facile protocol for one-pot preparation of AgNPs using M13 phage as bio-template by simply mixing AgN03 solution with alkali M13 phage.In the obtained AgNPs-M13 phage composite,Cr(Ⅲ)selectively coordinates with the amino residues on phage surface and leads to the aggregation of AgNPs through the bridging of M13 phages.This makes it feasible for colorimetric sensing of Cr(Ⅲ)by measuring the absorbance ratio of AgNPs at 600 and 405 nm,which provides a LOD of 14 nmol/L.The composite also showed favorable bactericidal activity for both Gram-positive and Gram-negative bacteria,making it a promising candidate as antibacterial film in chromium-containing dental alloys and meanwhile serve as a sensing probe for monitoring the corrosion of the dental alloys.
基金the Faculty of Chemical Engineering and University Teknologi MARA for the funding through grants 600-IRMI 5/3/GIP(070/2019),600-IRMI/DANA 5/3/BESTARI(115/2018),and 600 IRMI MYRA 5/3 BESTARI(021/2017).
文摘Recent developments in the biochemical and medicinal industries have been heavily focused on producing affordable glucose biosensors due to the condi nuous annual increase of diabetic patients worldwide.The devel-opment of a fast,accurate,and reliable glucose sensor will increase confidence in controlling di abetes mellitus and its assoclated health complications among the diabetic community.Electraspinning is a versatile method that can produce complex nanofbrous assemblies with attractiwe and functional characteristics from varlous polymers.Electrospun nanofibers demonstrated high efficiency in the immobilization of biological molecules,which can improve the sensing performance further.Integr ation of polymer electrospun nanofibers with metal nanoparticles,metal oxde or transition metal in producing nanobiocomposites is also a highly popul ar approach in the past few years.This report presents the current progress and research trends of the technique,focusing on varous ma-terials and fabrication strategies used to produce biosensing interfaces.This helps readers decide the suitable approach in designing highly sensitive,selective,fast,and inexpensive glucose sensors.