Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challengin...Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challenging due to its large genome size and high proportion of repetitive sequences.Allele-specific expression(ASE)plays a key role in regulating plant development and evolution,yet research on ASE in coconut is limited(Shao et al.,2019;Li et al.,2021;Zhang et al.,2021;Hu et al.,2022).Among phenotypic traits,fruit color is especially important as an indicator of maturity,guiding harvest timing and post-harvest processes(Kapoor et al.,2022).While prior studies have explored various coconut traits such as salt tolerance,fiber content,and plant height(Wang et al.,2021;Yang et al.,2021),investigations into ASE and fruit color remain scarce.展开更多
A short cycle means a cycle of length at most 7.In this paper,we prove that planar graphs without adjacent short cycles are 3-colorable.This improves a result of Borodin et al.(2005).
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Pepper(Capsicum annuum L.)is a typical self-pollinating crop with obvious heterosis in hybrids.Consequently,the use of morphological markers during the pepper seedling stage is crucial for pepper breeding.The color of...Pepper(Capsicum annuum L.)is a typical self-pollinating crop with obvious heterosis in hybrids.Consequently,the use of morphological markers during the pepper seedling stage is crucial for pepper breeding.The color of hypocotyl is widely used as a phenotypic marker in crossing studies of pepper.Pepper accessions generally have purple hypocotyls,which are mainly due to the anthocyanin accumulation in seedlings,and green hypocotyls are rarely observed in pepper.Here we reported the characterization of a green hypocotyl mutant of pepper,Cha1,which was identified from a pepper ethyl methanesulfonate(EMS)mutant library.Fine mapping revealed that the causal gene,CaTTG1,belonging to the WD40 repeat family,controlled the green hypocotyl phenotype of the mutant.Virus-induced gene silencing(VIGS)confirmed that CaTTG1 regulated anthocyanin accumulation.RNA-seq data showed that expression of structural genes CaDFR,CaANS,and CaUF3GT in the anthocyanin biosynthetic pathway was significantly decreased in Cha1 compared to the wild type.Yeast two-hybrid(Y2H)experiments also confirmed that CaTTG1 activated the synthesis of anthocyanin structural genes by forming a MBW complex with CaAN1 and CaGL3.In summary,this study provided a green hypocotyl mutant of pepper,and the Kompetitive Allele Specific PCR(KASP)marker developed based on the mutation site of the underlying gene would be helpful for pepper breeding.展开更多
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m...Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.展开更多
Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution fo...Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering.展开更多
A laser-induced periodic surface structure(LIPSS),which can be easily produced by femtosecond laser ablation,is a unique nanostructure with a visible refractive color that can be controlled by altering its orientation...A laser-induced periodic surface structure(LIPSS),which can be easily produced by femtosecond laser ablation,is a unique nanostructure with a visible refractive color that can be controlled by altering its orientation and uniformity,making it suitable for use in colorful marking,camouflage,and anticounterfeiting measures.However,single-mode information camouflage can no longer meet increasingly higher-level security requirements.Therefore,metasurfaces offer revolutionary solutions.In this study,conceptual metasurfaces of pure tungsten are theoretically proposed and verified using hierarchical LIPSS/nanoparticle(NP)nanostructures as meta-atoms.The anisotropy of the LIPSS nanostructure enables polarization-sensitive optical modulation,whereas the spatial configuration,NPs size,and period of LIPSS in the LIPSS/NP meta-atoms provide flexibility for tailoring broadband optical responses.In xpolarization,the LIPSS/NP meta-atom system provides more visible colors and divergent infrared absorption(emission)than in y-polarized and unpolarized modes,paving the way for vividly colorful polarization-sensitive displays and information camouflage in infrared bands.A simplified rendition of the world-famous painting“The Starry Night”by Van Gogh is used as a proof-of-concept.Preliminary experimental results are presented,based on which the feasibility and challenges for laser nanomanufacturing of the proposed conceptual metasurfaces are discussed,aiming to provide inspiration for the development of novel metasurfaces through interdisciplinary studies.展开更多
Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel...Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.展开更多
Textile dyeing is a significant reason of colored wastewater.If this wastewater is discharged directly into natural water sources,it can be detrimental to the ecosystem.Supercritical anhydrous dyeing technology provid...Textile dyeing is a significant reason of colored wastewater.If this wastewater is discharged directly into natural water sources,it can be detrimental to the ecosystem.Supercritical anhydrous dyeing technology provides a solution to this challenge.Supercritical fluids possess both liquid and gaseous properties,enabling them to dissolve materials and penetrate substances.展开更多
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors....Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.展开更多
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov...Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.展开更多
Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its impor...Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.展开更多
Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,co...Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.展开更多
The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,bas...The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,based on the principle of three primary colors,brick-red g-C_(3)N_(4)/Ag_(2)CrO_(4)composite was loaded onto a green polyurethane(PU)sponge using polyvinyl alcohol(PVA)as the linking agent.The resultant PU/PVA/g-C_(3)N_(4)/Ag_(2)CrO_(4)composite exhibits outstanding performance in simultaneous photothermal/photocatalytic water evaporation,pollutant degradation,sterilization,and thermoelectric generation.Under 1.0 kW m^(-2)irradiation,the water evaporation rate reaches 3.19 kg m^(-2)h-1,while a single thermoelectric module generates a maximum thermoelectric output power of 0.25 W m^(-2).Concurrently,rhodamine B(RhB)at a concentration of 4.0×10^(-4)mol L^(-1)undergoes complete photocatalytic degradation within 40 min.When the light intensity is 2.0 kW m^(-2),the evaporation rate soars to 8.52 kg m^(-2)h^(-1),and the thermoelectric power output increases to 1.1 W m^(-2).Furthermore,this photothermal/photocatalytic material based on the principle of three primary colors has excellent photothermal/photocatalytic antibacterial activity against Escherichia coli.By abandoning black light-absorbing materials,more active sites of the photocatalyst can be exposed.The g-C_(3)N_(4)/Ag_(2)CrO_(4)heterojunction accelerates the separation of photogenerated carriers,while the hydrophilic groups in the photothermal/photocatalytic materials reduce the water evaporation enthalpy.This research provides a novel approach for fabricating multi-function photothermal/photocatalytic materials,which could quicken the development of solution to freshwater and electricity energy shortages as well as environmental pollution issues.展开更多
Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to inv...Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.展开更多
In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and dif...In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.展开更多
Given two graphs G and H,the Ramsey number R(G,H)is the smallest positive integer N such that every 2-coloring of the edges of K_(N)contains either a red G or a blue H.Let K_(N-1)■K_(1,k)be the graph obtained from K_...Given two graphs G and H,the Ramsey number R(G,H)is the smallest positive integer N such that every 2-coloring of the edges of K_(N)contains either a red G or a blue H.Let K_(N-1)■K_(1,k)be the graph obtained from K_(N-1)by adding anew vertexνconnecting k vertices of K_(N-1).A graph G withχ(G)=k+1 is called edge-critical if G contains an edge e such thatχ(G-e)=k.A considerable amount of research has been conducted by previous scholars on Ramsey numbers ofgraphs.In this study,we show that for an edge-critical graph G with x(G)=k+1,when k≥2,1≥2,and n is sufficiently large,R(G,K_(1)+nK_(t))=knt+1 and r,(G,K_(1)+nK_(t))=(k-1)nt+1.展开更多
In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjuste...In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
基金supported by Central Public-interest Scientific Institution Basal Research Fund(CATAS-Nos.1630152023007,1630152023011,1630152023012,1630152023013)the National Natural Science Foundation of China(Grant No.32071805).
文摘Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challenging due to its large genome size and high proportion of repetitive sequences.Allele-specific expression(ASE)plays a key role in regulating plant development and evolution,yet research on ASE in coconut is limited(Shao et al.,2019;Li et al.,2021;Zhang et al.,2021;Hu et al.,2022).Among phenotypic traits,fruit color is especially important as an indicator of maturity,guiding harvest timing and post-harvest processes(Kapoor et al.,2022).While prior studies have explored various coconut traits such as salt tolerance,fiber content,and plant height(Wang et al.,2021;Yang et al.,2021),investigations into ASE and fruit color remain scarce.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6090699)National Natural Science Foundation of China (Grant No.10971198)
文摘A short cycle means a cycle of length at most 7.In this paper,we prove that planar graphs without adjacent short cycles are 3-colorable.This improves a result of Borodin et al.(2005).
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金supported by grants from the Special Funds for Construction of Innovative Provinces in Hunan Province(Grant No.2021NK1006)the Science and Technology Innovation Program of Hunan Province(Grant No.2021JC0007)+2 种基金China Agriculture Research System of MOF and MARA(Grant No.CARS-24-A-15)National Natural Science Foundation of China(Grant No.32130097)National Natural Science Foundation of China(Grant No.U19A2028)。
文摘Pepper(Capsicum annuum L.)is a typical self-pollinating crop with obvious heterosis in hybrids.Consequently,the use of morphological markers during the pepper seedling stage is crucial for pepper breeding.The color of hypocotyl is widely used as a phenotypic marker in crossing studies of pepper.Pepper accessions generally have purple hypocotyls,which are mainly due to the anthocyanin accumulation in seedlings,and green hypocotyls are rarely observed in pepper.Here we reported the characterization of a green hypocotyl mutant of pepper,Cha1,which was identified from a pepper ethyl methanesulfonate(EMS)mutant library.Fine mapping revealed that the causal gene,CaTTG1,belonging to the WD40 repeat family,controlled the green hypocotyl phenotype of the mutant.Virus-induced gene silencing(VIGS)confirmed that CaTTG1 regulated anthocyanin accumulation.RNA-seq data showed that expression of structural genes CaDFR,CaANS,and CaUF3GT in the anthocyanin biosynthetic pathway was significantly decreased in Cha1 compared to the wild type.Yeast two-hybrid(Y2H)experiments also confirmed that CaTTG1 activated the synthesis of anthocyanin structural genes by forming a MBW complex with CaAN1 and CaGL3.In summary,this study provided a green hypocotyl mutant of pepper,and the Kompetitive Allele Specific PCR(KASP)marker developed based on the mutation site of the underlying gene would be helpful for pepper breeding.
基金supported by the National Natural Science Foundation of China(No.62374142)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104500 and 82430062)the Key Research and Development Projects of Shaanxi Province(Grant No.2023-YBSF-263),the Shenzhen Engineering Research Centre(Grant No.XMHT20230115004)the Shenzhen Science and Technology Innovation Commission(Grant No.KCXFZ20201221173207022).
文摘Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering.
基金financial support received from the Shanghai Pujiang Program(23PJ1406500).
文摘A laser-induced periodic surface structure(LIPSS),which can be easily produced by femtosecond laser ablation,is a unique nanostructure with a visible refractive color that can be controlled by altering its orientation and uniformity,making it suitable for use in colorful marking,camouflage,and anticounterfeiting measures.However,single-mode information camouflage can no longer meet increasingly higher-level security requirements.Therefore,metasurfaces offer revolutionary solutions.In this study,conceptual metasurfaces of pure tungsten are theoretically proposed and verified using hierarchical LIPSS/nanoparticle(NP)nanostructures as meta-atoms.The anisotropy of the LIPSS nanostructure enables polarization-sensitive optical modulation,whereas the spatial configuration,NPs size,and period of LIPSS in the LIPSS/NP meta-atoms provide flexibility for tailoring broadband optical responses.In xpolarization,the LIPSS/NP meta-atom system provides more visible colors and divergent infrared absorption(emission)than in y-polarized and unpolarized modes,paving the way for vividly colorful polarization-sensitive displays and information camouflage in infrared bands.A simplified rendition of the world-famous painting“The Starry Night”by Van Gogh is used as a proof-of-concept.Preliminary experimental results are presented,based on which the feasibility and challenges for laser nanomanufacturing of the proposed conceptual metasurfaces are discussed,aiming to provide inspiration for the development of novel metasurfaces through interdisciplinary studies.
基金supported by the Innovation and Development Program of Beijing Vegetable Research Center,China(KYCX202301)the Construction of Cucurbits Collaboration and Innovation Center,China(XTCX202301)+3 种基金the Youth Research Fund of Beijing Academy of Agriculture and Forestry Sciences,China(QNJJ202426)the National Natural Science Foundation of China(U21A20229 and 32102397)the Scientific Research Foundation of the Higher Education Institutions for Distinguished Young Scholars in Anhui Province,China(2022AH020037)and the Key Research and Development Projects of Anhui Province,China(2023z04020019)。
文摘Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.
文摘Textile dyeing is a significant reason of colored wastewater.If this wastewater is discharged directly into natural water sources,it can be detrimental to the ecosystem.Supercritical anhydrous dyeing technology provides a solution to this challenge.Supercritical fluids possess both liquid and gaseous properties,enabling them to dissolve materials and penetrate substances.
基金financially supported by the National Natural Science Foundation of China(Nos.52233001,51927805,and 52173110)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD07)the Shanghai Rising-Star Program(No.22QA1401200)。
文摘Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.
基金supported by the National Natural Science Foundation of China(Grant No.61925307).
文摘Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.
基金supported by the Yunnan Seed Laboratory,China(202205AR070001-15)the National Natural Science Foundation of China,China(Grant No.32160697)。
文摘Juglans sigillata is an economically valuable nut crop renowned for its nutritional richness,including essential nutrients,antioxidants,and healthy fats,which boost human cardial,brain and gut health.Despite its importance,the lack of a complete genome assembly has been a stumbling block in its biological breeding process.Therefore,we generated deep coverage ultralong Oxford Nanopore Technology(ONT)and PacBio HiFi reads to construct a telomere-to-telomere(T2T)genome assembly.The final assembly spans 537.27 Mb with no gaps,demonstrating a remarkable completeness of 98.1%.We utilized a combination of transcriptome data and homologous proteins to annotate the genome,identifying 36018 protein-coding genes.Furthermore,we profiled global cytosine DNA methylations using ONT sequencing data.Global methylome analysis revealed high methylation levels in transposable element(TE)-rich chromosomal regions juxtaposed with comparatively lower methylation in gene-rich areas.By integrating a detailed multi-omics data analysis,we obtained valuable insights into the mechanism underlying endopleura coloration.This investigation led to the identification of eight candidate genes(e.g.ANR)involved in anthocyanin biosynthesis pathways,which are crucial for the development of color in plants.The comprehensive genome assembly and the understanding of the genetic basis of important traits like endopleura coloration will open avenues for more efficient breeding programs and improved crop quality.
文摘Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.
基金supported by the National Natural Science Foundation of China(52372234)the Research Foundation for Talented Scholars of Linyi University(Z6122010).
文摘The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,based on the principle of three primary colors,brick-red g-C_(3)N_(4)/Ag_(2)CrO_(4)composite was loaded onto a green polyurethane(PU)sponge using polyvinyl alcohol(PVA)as the linking agent.The resultant PU/PVA/g-C_(3)N_(4)/Ag_(2)CrO_(4)composite exhibits outstanding performance in simultaneous photothermal/photocatalytic water evaporation,pollutant degradation,sterilization,and thermoelectric generation.Under 1.0 kW m^(-2)irradiation,the water evaporation rate reaches 3.19 kg m^(-2)h-1,while a single thermoelectric module generates a maximum thermoelectric output power of 0.25 W m^(-2).Concurrently,rhodamine B(RhB)at a concentration of 4.0×10^(-4)mol L^(-1)undergoes complete photocatalytic degradation within 40 min.When the light intensity is 2.0 kW m^(-2),the evaporation rate soars to 8.52 kg m^(-2)h^(-1),and the thermoelectric power output increases to 1.1 W m^(-2).Furthermore,this photothermal/photocatalytic material based on the principle of three primary colors has excellent photothermal/photocatalytic antibacterial activity against Escherichia coli.By abandoning black light-absorbing materials,more active sites of the photocatalyst can be exposed.The g-C_(3)N_(4)/Ag_(2)CrO_(4)heterojunction accelerates the separation of photogenerated carriers,while the hydrophilic groups in the photothermal/photocatalytic materials reduce the water evaporation enthalpy.This research provides a novel approach for fabricating multi-function photothermal/photocatalytic materials,which could quicken the development of solution to freshwater and electricity energy shortages as well as environmental pollution issues.
基金Dalian Science and Technology Innovation Fund Project (2022JJ11CG008)。
文摘Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.
文摘In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.
基金supported by the National Key Research and Development Program of China(2023YFA1010200,2020YFA0713100)the National Natural Science Foundation of China(12071453)the Innovation Program for Quantum Science and Technology(2021ZD0302902).
文摘Given two graphs G and H,the Ramsey number R(G,H)is the smallest positive integer N such that every 2-coloring of the edges of K_(N)contains either a red G or a blue H.Let K_(N-1)■K_(1,k)be the graph obtained from K_(N-1)by adding anew vertexνconnecting k vertices of K_(N-1).A graph G withχ(G)=k+1 is called edge-critical if G contains an edge e such thatχ(G-e)=k.A considerable amount of research has been conducted by previous scholars on Ramsey numbers ofgraphs.In this study,we show that for an edge-critical graph G with x(G)=k+1,when k≥2,1≥2,and n is sufficiently large,R(G,K_(1)+nK_(t))=knt+1 and r,(G,K_(1)+nK_(t))=(k-1)nt+1.
文摘In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.