BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ...BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions.展开更多
AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix metho...AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.展开更多
In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of...In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%.展开更多
In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic s...In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.展开更多
Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation...Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool.展开更多
A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes...A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes) on a given microscopic image. The classifications of leukocytes are performed based on the combination of color and texture features of the blood cell images. The developed system classifies the leukocytes in one of the five categories (neutrophils, eosinophils, basophils, lymphocytes, and monocytes). In the preprocessing stage, the system starts with converting the microscopic images from Red Green Blue (RGB) color space to Hue Saturation Value (HSV) color space. Next, the system splits the Hue and Saturation features from the Value feature. For both Hue and Saturation features, the system processes their color information using the Feature Selection method and the Window Cropping method;while the Value feature is processed by its texture information using the Co-occurrence matrix method. The final recognition stage is performed using the Euclidean distance method. The combination of the Feature Selection and Co-occurrence Matrix methods gives the best overall recognition accuracies for classifying leukocyte images.展开更多
The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material ...The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.展开更多
In this paper, a bias-eliminated subspace identification method is proposed for industrial applications subject to colored noise. Based on double orthogonal projections, an identification algorithm is developed to eli...In this paper, a bias-eliminated subspace identification method is proposed for industrial applications subject to colored noise. Based on double orthogonal projections, an identification algorithm is developed to eliminate the influence of colored noise for consistent estimation of the extended observability matrix of the plant state-space model. A shift-invariant approach is then given to retrieve the system matrices from the estimated extended observability matrix. The persistent excitation condition for consistent estimation of the extended observability matrix is analyzed. Moreover, a numerical algorithm is given to compute the estimation error of the estimated extended observability matrix. Two illustrative examples are given to demonstrate the effectiveness and merit of the proposed method.展开更多
Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompress...Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompression with different quantization matrices. However, the detectionof double JPEG color images with the same quantization matrix is stilla challenging task. An effective detection approach to extract features isproposed in this paper by combining traditional analysis with ConvolutionalNeural Networks (CNN). On the one hand, the number of nonzero pixels andthe sum of pixel values of color space conversion error are provided with 12-dimensional features through experiments. On the other hand, the roundingerror, the truncation error and the quantization coefficient matrix are used togenerate a total of 128-dimensional features via a specially designed CNN. Insuch aCNN, convolutional layers with fixed kernel of 1×1 and Dropout layersare adopted to prevent overfitting of the model, and an average pooling layeris used to extract local characteristics. In this approach, the Support VectorMachine (SVM) classifier is applied to distinguishwhether a given color imageis primarily or secondarily compressed. The approach is also suitable for thecase when customized needs are considered. The experimental results showthat the proposed approach is more effective than some existing ones whenthe compression quality factors are low.展开更多
In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of method...In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.展开更多
Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians ar...Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders,pigment networks,and the color of melanoma.These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease.The trained clinicians can overcome the issues such as low contrast,lesions varying in size,color,and the existence of several objects like hair,reflections,air bubbles,and oils on almost all images.Active contour is one of the suitable methods with some drawbacks for the segmentation of irre-gular shapes.An entropy and morphology-based automated mask selection is pro-posed for the active contour method.The proposed method can improve the overall segmentation along with the boundary of melanoma images.In this study,features have been extracted to perform the classification on different texture scales like Gray level co-occurrence matrix(GLCM)and Local binary pattern(LBP).When four different moments pull out in six different color spaces like HSV,Lin RGB,YIQ,YCbCr,XYZ,and CIE L*a*b then global information from different colors channels have been combined.Therefore,hybrid fused texture features;such as local,color feature as global,shape features,and Artificial neural network(ANN)as classifiers have been proposed for the categorization of the malignant and non-malignant.Experimentations had been carried out on datasets Dermis,DermQuest,and PH2.The results of our advanced method showed super-iority and contrast with the existing state-of-the-art techniques.展开更多
The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and muni...The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM level- s (defined as a30s), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a con- centrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central hay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (EF) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input.展开更多
To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template match...To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template matching method incorporating fabric texture characteristics is proposed.Firstly,the template image set is evenly divided into N groups of sub-templates at the same positions to mitigate the effects of image illumination,reduce the model computation,and enhance the detection speed,with all image blocks being preprocessed.Then,the feature value information is extracted from the processed set of subtemplates at the same position,extracting two gray-level cooccurrence matrix(GLCM)feature values for each image block.These two feature values are then fused to construct a matching template.The mean feature value of all image blocks at the same position is calculated and used as the threshold for template detection,enabling automatic selection of template thresholds for different positions.Finally,the feature values of the image blocks in the experimental set are traversed and matched with subtemplates at the same positions to obtain fabric defect detection results.The detection experiments are conducted on a platform that simulates a fabric weaving environment,using defective gray fabrics from a weaving factory as the detected objects.The outcomes demonstrate the efficacy of the proposed method in detecting defects in gray fabrics,the mitigation of the impact of uneven external lighting on detection outcomes,and the enhancement of detection accuracy and adaptability.展开更多
Texture analysis methods offer substantial advantages and potential in examining macro-topographic features of dunes.Despite these advantages,comprehensive approaches that integrate digital elevation model(DEM)with qu...Texture analysis methods offer substantial advantages and potential in examining macro-topographic features of dunes.Despite these advantages,comprehensive approaches that integrate digital elevation model(DEM)with quantitative texture features have not been fully developed.This study introduced an automatic classification framework for dunes that combines texture and topographic features and validated it through a typical coastal aeolian landform,namely,dunes in the Namib Desert.A three-stage approach was outlined:(1)segmentation of dune units was conducted using digital terrain analysis;(2)six texture features(angular second moment,contrast,correlation,variance,entropy,and inverse difference moment)were extracted from the gray-level co-occurrence matrix(GLCM)and subsequently quantified;and(3)texture–topographic indices were integrated into the random forest(RF)model for classification.The results show that the RF model fused with texture features can accurately identify dune morphological characteristics;through accuracy evaluation and remote sensing image verification,the overall accuracy reaches 78.0%(kappa coefficient=0.72),outperforming traditional spectral-based methods.In addition,spatial analysis reveals that coastal dunes exhibit complex texture patterns,with texture homogeneity being closely linked to dune-type transitions.Specifically,homogeneous textures correspond to simple and stable forms such as barchans,while heterogeneous textures are associated with complex or composite dunes.The complexity,periodicity,and directionality of texture features are highly consistent with the spatial distribution of dunes.Validation using high-resolution remote sensing imagery(Sentinel-2)further confirms that the method effectively clusters similar dunes and distinguishes different dune types.Additionally,the dune classification results have a good correspondence with changes in near-surface wind regimes.Overall,the findings suggest that texture features derived from DEM can accurately capture the dynamic characteristics of dune morphology,offering a novel approach for automatic dune classification.Compared with traditional methods,the developed approach facilitates large-scale and high-precision dune mapping while reducing the workload of manual interpretation,thus advancing research on aeolian geomorphology.展开更多
文摘BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions.
基金Supported by the Priming Scientific Research Foundation for the Junior Researcher in Beijing Tongren Hospital,Capital Medical University
文摘AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.
基金the Yunnan Applied Basic Research Projects(No.2016FD039)the Talent Cultivation Project in Yunnan Province(No.KKSY201503063)
文摘In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%.
基金This work is supported by the National Natural Science Foundation of China(No.U1736118)the Natural Science Foundation of Guangdong(No.2016A030313350)+3 种基金the Special Funds for Science and Technology Development of Guangdong(No.2016KZ010103)the Key Project of Scientific Research Plan of Guangzhou(No.201804020068)the Fundamental Research Funds for the Central Universities(No.16lgjc83 and No.17lgjc45)the Science and Technology Planning Project of Guangdong Province(Grant No.2017A040405051).
文摘In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.
文摘Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool.
文摘A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes) on a given microscopic image. The classifications of leukocytes are performed based on the combination of color and texture features of the blood cell images. The developed system classifies the leukocytes in one of the five categories (neutrophils, eosinophils, basophils, lymphocytes, and monocytes). In the preprocessing stage, the system starts with converting the microscopic images from Red Green Blue (RGB) color space to Hue Saturation Value (HSV) color space. Next, the system splits the Hue and Saturation features from the Value feature. For both Hue and Saturation features, the system processes their color information using the Feature Selection method and the Window Cropping method;while the Value feature is processed by its texture information using the Co-occurrence matrix method. The final recognition stage is performed using the Euclidean distance method. The combination of the Feature Selection and Co-occurrence Matrix methods gives the best overall recognition accuracies for classifying leukocyte images.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.5147113 and 51505037)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.3102017zy029,310832163402,and 310832163403)
文摘The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.
基金This work was supported by the National Thousand Talents Program of China, the National Natural Science Foundation of China (Nos. 61473054, 61633006), and the Fundamental Research Funds for the Central Universities of China (No. DUT15ZD108).
文摘In this paper, a bias-eliminated subspace identification method is proposed for industrial applications subject to colored noise. Based on double orthogonal projections, an identification algorithm is developed to eliminate the influence of colored noise for consistent estimation of the extended observability matrix of the plant state-space model. A shift-invariant approach is then given to retrieve the system matrices from the estimated extended observability matrix. The persistent excitation condition for consistent estimation of the extended observability matrix is analyzed. Moreover, a numerical algorithm is given to compute the estimation error of the estimated extended observability matrix. Two illustrative examples are given to demonstrate the effectiveness and merit of the proposed method.
基金Supported by the Fundamental Research Funds for the Central Universities (No.500421126)。
文摘Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompression with different quantization matrices. However, the detectionof double JPEG color images with the same quantization matrix is stilla challenging task. An effective detection approach to extract features isproposed in this paper by combining traditional analysis with ConvolutionalNeural Networks (CNN). On the one hand, the number of nonzero pixels andthe sum of pixel values of color space conversion error are provided with 12-dimensional features through experiments. On the other hand, the roundingerror, the truncation error and the quantization coefficient matrix are used togenerate a total of 128-dimensional features via a specially designed CNN. Insuch aCNN, convolutional layers with fixed kernel of 1×1 and Dropout layersare adopted to prevent overfitting of the model, and an average pooling layeris used to extract local characteristics. In this approach, the Support VectorMachine (SVM) classifier is applied to distinguishwhether a given color imageis primarily or secondarily compressed. The approach is also suitable for thecase when customized needs are considered. The experimental results showthat the proposed approach is more effective than some existing ones whenthe compression quality factors are low.
基金supported by the National Natural Science Foundation of China(31271837 and 31471704)the major project of Fujian Industry-Academy-Research Cooperation(2013N5003)+1 种基金the Natural Science Foundation(2011J0101)of Fujian Province,the Science and Technology Program under Fujian Provincial Department of Education(JA13439 and JA13440)the Science and Technology Program under Fujian Provincial Department of Forestry(20135)
文摘In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.
文摘Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders,pigment networks,and the color of melanoma.These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease.The trained clinicians can overcome the issues such as low contrast,lesions varying in size,color,and the existence of several objects like hair,reflections,air bubbles,and oils on almost all images.Active contour is one of the suitable methods with some drawbacks for the segmentation of irre-gular shapes.An entropy and morphology-based automated mask selection is pro-posed for the active contour method.The proposed method can improve the overall segmentation along with the boundary of melanoma images.In this study,features have been extracted to perform the classification on different texture scales like Gray level co-occurrence matrix(GLCM)and Local binary pattern(LBP).When four different moments pull out in six different color spaces like HSV,Lin RGB,YIQ,YCbCr,XYZ,and CIE L*a*b then global information from different colors channels have been combined.Therefore,hybrid fused texture features;such as local,color feature as global,shape features,and Artificial neural network(ANN)as classifiers have been proposed for the categorization of the malignant and non-malignant.Experimentations had been carried out on datasets Dermis,DermQuest,and PH2.The results of our advanced method showed super-iority and contrast with the existing state-of-the-art techniques.
基金The National Natural Science Foundation of China under contract Nos41030858 and 40525017the Changjiang Scholars Program,Ministry of Education of China+1 种基金the National Basic Research Program of China(973Program)under contract No.2010CB428904the"Taishan Scholar"Special Research Fund of Shandong Province,China
文摘The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM level- s (defined as a30s), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a con- centrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central hay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (EF) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input.
文摘To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template matching method incorporating fabric texture characteristics is proposed.Firstly,the template image set is evenly divided into N groups of sub-templates at the same positions to mitigate the effects of image illumination,reduce the model computation,and enhance the detection speed,with all image blocks being preprocessed.Then,the feature value information is extracted from the processed set of subtemplates at the same position,extracting two gray-level cooccurrence matrix(GLCM)feature values for each image block.These two feature values are then fused to construct a matching template.The mean feature value of all image blocks at the same position is calculated and used as the threshold for template detection,enabling automatic selection of template thresholds for different positions.Finally,the feature values of the image blocks in the experimental set are traversed and matched with subtemplates at the same positions to obtain fabric defect detection results.The detection experiments are conducted on a platform that simulates a fabric weaving environment,using defective gray fabrics from a weaving factory as the detected objects.The outcomes demonstrate the efficacy of the proposed method in detecting defects in gray fabrics,the mitigation of the impact of uneven external lighting on detection outcomes,and the enhancement of detection accuracy and adaptability.
基金supported by the National Natural Science Foundation of China(42271421).
文摘Texture analysis methods offer substantial advantages and potential in examining macro-topographic features of dunes.Despite these advantages,comprehensive approaches that integrate digital elevation model(DEM)with quantitative texture features have not been fully developed.This study introduced an automatic classification framework for dunes that combines texture and topographic features and validated it through a typical coastal aeolian landform,namely,dunes in the Namib Desert.A three-stage approach was outlined:(1)segmentation of dune units was conducted using digital terrain analysis;(2)six texture features(angular second moment,contrast,correlation,variance,entropy,and inverse difference moment)were extracted from the gray-level co-occurrence matrix(GLCM)and subsequently quantified;and(3)texture–topographic indices were integrated into the random forest(RF)model for classification.The results show that the RF model fused with texture features can accurately identify dune morphological characteristics;through accuracy evaluation and remote sensing image verification,the overall accuracy reaches 78.0%(kappa coefficient=0.72),outperforming traditional spectral-based methods.In addition,spatial analysis reveals that coastal dunes exhibit complex texture patterns,with texture homogeneity being closely linked to dune-type transitions.Specifically,homogeneous textures correspond to simple and stable forms such as barchans,while heterogeneous textures are associated with complex or composite dunes.The complexity,periodicity,and directionality of texture features are highly consistent with the spatial distribution of dunes.Validation using high-resolution remote sensing imagery(Sentinel-2)further confirms that the method effectively clusters similar dunes and distinguishes different dune types.Additionally,the dune classification results have a good correspondence with changes in near-surface wind regimes.Overall,the findings suggest that texture features derived from DEM can accurately capture the dynamic characteristics of dune morphology,offering a novel approach for automatic dune classification.Compared with traditional methods,the developed approach facilitates large-scale and high-precision dune mapping while reducing the workload of manual interpretation,thus advancing research on aeolian geomorphology.