Based on the "Grayscales average distribution" method which equally distributes the input gray levels to output gray levels, three improved methods named: "Reduce the gray range expressed by the less si...Based on the "Grayscales average distribution" method which equally distributes the input gray levels to output gray levels, three improved methods named: "Reduce the gray range expressed by the less significant subfields", "Low levels preset" and "Modify the exponent of inverse-gamma function" are proposed in this paper. Using these methods, the inverse-gamma relation subfields code can be obtained easily which can improve the low level expressions of AC-PDP. And a program, "gray scales distribution validate program", which can enhance the expressions of the demanded gray levels range, is also proposed in this paper.展开更多
A t-tone coloring of a graph assigns t distinct colors to each vertex with vertices at distance d having fewer than d colors in common.The t-tone chromatic number of a graph is the smallest number of colors used in al...A t-tone coloring of a graph assigns t distinct colors to each vertex with vertices at distance d having fewer than d colors in common.The t-tone chromatic number of a graph is the smallest number of colors used in all t-tone colorings of that graph.In this article,we study t-tone coloring of some finite planar lattices and obtain exact formulas for their t-tone chromatic number.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution fo...Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering.展开更多
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m...Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.展开更多
Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel...Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.展开更多
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors....Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.展开更多
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov...Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.展开更多
Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,co...Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.展开更多
The pervasive use of photo editing applications such as Photoshop and FaceTune has significantly altered societal beauty standards, particularly for individuals with skin of color, often leading to unrealistic expecta...The pervasive use of photo editing applications such as Photoshop and FaceTune has significantly altered societal beauty standards, particularly for individuals with skin of color, often leading to unrealistic expectations regarding skin appearance and health. These tools allow users to smooth skin textures, lighten skin tones, and erase imperfections, perpetuating Eurocentric beauty ideals that frequently marginalize the natural diversity of skin tones and textures. Consequently, individuals with skin of color may seek dermatological interventions—such as skin lightening treatments, aggressive acne scar revisions, and other cosmetic procedures—aimed at achieving appearances that align more closely with digitally manipulated images. This pursuit of an unattainable aesthetic can result in increased dissatisfaction with common skin conditions like hyperpigmentation and keloids, which are often misrepresented in edited photos. Additionally, the psychological impact of these alterations can exacerbate feelings of inadequacy, contributing to conditions such as anxiety and body dysmorphic disorder. Dermatologists face the dual challenge of addressing patients’ clinical needs while also managing their expectations shaped by digital enhancements. To combat this, it is essential for dermatologists to integrate patient education that emphasizes the beauty of diverse skin tones and the discrepancies between digital images and authentic skin health. By fostering an understanding of realistic outcomes and promoting the acceptance of natural skin characteristics, dermatologists can empower individuals with skin of color to prioritize authentic skin health over digitally influenced ideals, ultimately leading to more satisfying dermatological care and improved self-image.展开更多
In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjuste...In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.展开更多
The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,bas...The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,based on the principle of three primary colors,brick-red g-C_(3)N_(4)/Ag_(2)CrO_(4)composite was loaded onto a green polyurethane(PU)sponge using polyvinyl alcohol(PVA)as the linking agent.The resultant PU/PVA/g-C_(3)N_(4)/Ag_(2)CrO_(4)composite exhibits outstanding performance in simultaneous photothermal/photocatalytic water evaporation,pollutant degradation,sterilization,and thermoelectric generation.Under 1.0 kW m^(-2)irradiation,the water evaporation rate reaches 3.19 kg m^(-2)h-1,while a single thermoelectric module generates a maximum thermoelectric output power of 0.25 W m^(-2).Concurrently,rhodamine B(RhB)at a concentration of 4.0×10^(-4)mol L^(-1)undergoes complete photocatalytic degradation within 40 min.When the light intensity is 2.0 kW m^(-2),the evaporation rate soars to 8.52 kg m^(-2)h^(-1),and the thermoelectric power output increases to 1.1 W m^(-2).Furthermore,this photothermal/photocatalytic material based on the principle of three primary colors has excellent photothermal/photocatalytic antibacterial activity against Escherichia coli.By abandoning black light-absorbing materials,more active sites of the photocatalyst can be exposed.The g-C_(3)N_(4)/Ag_(2)CrO_(4)heterojunction accelerates the separation of photogenerated carriers,while the hydrophilic groups in the photothermal/photocatalytic materials reduce the water evaporation enthalpy.This research provides a novel approach for fabricating multi-function photothermal/photocatalytic materials,which could quicken the development of solution to freshwater and electricity energy shortages as well as environmental pollution issues.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for ...Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color.展开更多
The color cluster red,black and white occurs in the artistic,ritual and magical activities of virtually all cultures around the world,suggesting their preeminence in human symbolic thought.Among the various explanatio...The color cluster red,black and white occurs in the artistic,ritual and magical activities of virtually all cultures around the world,suggesting their preeminence in human symbolic thought.Among the various explanations that have been brought forth to account for the special status of these three colors are:1)evolutionary/ecological arguments,drawing support from vision science,perceptual philosophy and primate biology;2)cognitive arguments,which pay attention to how human beings categorize and create meaning out of perceptual experiences;3)linguistic arguments,as these are the earliest lexicalized color words in most languages;4)and diverse socio-cultural arguments.This paper will explore the manifestation of red,black and white–both in concrete terms,through the use and manipulation of materials,as well as abstract ideas–in Assyrian and Babylonian magical and ritual activities.It will highlight how meaning is created and communicated by relating colors to natural and supernatural phenomena and will further attempt to provide a methodological framework for the analysis of color symbolism.展开更多
BACKGROUND Simultanagnosia is a neurological disorder that impairs an individual's ability to perceive more than one object at a time visually.While the individual may acknowledge the presence of multiple objects ...BACKGROUND Simultanagnosia is a neurological disorder that impairs an individual's ability to perceive more than one object at a time visually.While the individual may acknowledge the presence of multiple objects in his field of view,he cannot generally summarize the overall percept.CASE SUMMARY We describe a case of simultanagnosia in Posterior Cortical Atrophy,evidenced by the Ishihara color test.A 54-year-old woman complained of reading problems despite normal visual acuity and a structural eye exam.The patient failed to identify any of the Ishihara color plates in either eye despite adequate naming of colors.Automated visual field testing showed a homonymous hemianopia.Structural and functional neuroimaging and cerebrospinal fluid analysis were consistent with posterior cortical atrophy.CONCLUSION Simultanagnosia can be tested with the Ishihara pseudoisochromatic plates because the recognition of embedded number patterns in the test requires appreciation of a collection of individual stimuli.展开更多
Image coloring is an inherently uncertain and multimodal problem.By inputting a grayscale image into a coloring network,visually plausible colored photos can be generated.Conventional methods primarily rely on semanti...Image coloring is an inherently uncertain and multimodal problem.By inputting a grayscale image into a coloring network,visually plausible colored photos can be generated.Conventional methods primarily rely on semantic information for image colorization.These methods still suffer from color contamination and semantic confusion.This is largely due to the limited capacity of convolutional neural networks to learn deep semantic information inherent in images effectively.In this paper,we propose a network structure that addresses these limitations by leveraging multi-level semantic information classification and fusion.Additionally,we introduce a global semantic fusion network to combat the issues of color contamination.The proposed coloring encoder accurately extracts object-level semantic information from images.To further enhance visual plausibility,we employ a self-supervised adversarial training method.We train the network structure on various datasets with varying amounts of data and evaluate its performance using the ImageNet validation set and COCO validation set.Experimental results demonstrate that our proposed algorithm can generate more realistic images compared to previous approaches,showcasing its high generalization ability.展开更多
文摘Based on the "Grayscales average distribution" method which equally distributes the input gray levels to output gray levels, three improved methods named: "Reduce the gray range expressed by the less significant subfields", "Low levels preset" and "Modify the exponent of inverse-gamma function" are proposed in this paper. Using these methods, the inverse-gamma relation subfields code can be obtained easily which can improve the low level expressions of AC-PDP. And a program, "gray scales distribution validate program", which can enhance the expressions of the demanded gray levels range, is also proposed in this paper.
基金Supported by the National Natural Science Foundation of China(Grant No.12271210)the Scientific Research Foundation of Jimei University(Grant No.Q202201).
文摘A t-tone coloring of a graph assigns t distinct colors to each vertex with vertices at distance d having fewer than d colors in common.The t-tone chromatic number of a graph is the smallest number of colors used in all t-tone colorings of that graph.In this article,we study t-tone coloring of some finite planar lattices and obtain exact formulas for their t-tone chromatic number.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104500 and 82430062)the Key Research and Development Projects of Shaanxi Province(Grant No.2023-YBSF-263),the Shenzhen Engineering Research Centre(Grant No.XMHT20230115004)the Shenzhen Science and Technology Innovation Commission(Grant No.KCXFZ20201221173207022).
文摘Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering.
基金supported by the National Natural Science Foundation of China(No.62374142)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.
基金supported by the Innovation and Development Program of Beijing Vegetable Research Center,China(KYCX202301)the Construction of Cucurbits Collaboration and Innovation Center,China(XTCX202301)+3 种基金the Youth Research Fund of Beijing Academy of Agriculture and Forestry Sciences,China(QNJJ202426)the National Natural Science Foundation of China(U21A20229 and 32102397)the Scientific Research Foundation of the Higher Education Institutions for Distinguished Young Scholars in Anhui Province,China(2022AH020037)and the Key Research and Development Projects of Anhui Province,China(2023z04020019)。
文摘Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future.
基金financially supported by the National Natural Science Foundation of China(Nos.52233001,51927805,and 52173110)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD07)the Shanghai Rising-Star Program(No.22QA1401200)。
文摘Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.
基金supported by the National Natural Science Foundation of China(Grant No.61925307).
文摘Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.
文摘Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.
文摘The pervasive use of photo editing applications such as Photoshop and FaceTune has significantly altered societal beauty standards, particularly for individuals with skin of color, often leading to unrealistic expectations regarding skin appearance and health. These tools allow users to smooth skin textures, lighten skin tones, and erase imperfections, perpetuating Eurocentric beauty ideals that frequently marginalize the natural diversity of skin tones and textures. Consequently, individuals with skin of color may seek dermatological interventions—such as skin lightening treatments, aggressive acne scar revisions, and other cosmetic procedures—aimed at achieving appearances that align more closely with digitally manipulated images. This pursuit of an unattainable aesthetic can result in increased dissatisfaction with common skin conditions like hyperpigmentation and keloids, which are often misrepresented in edited photos. Additionally, the psychological impact of these alterations can exacerbate feelings of inadequacy, contributing to conditions such as anxiety and body dysmorphic disorder. Dermatologists face the dual challenge of addressing patients’ clinical needs while also managing their expectations shaped by digital enhancements. To combat this, it is essential for dermatologists to integrate patient education that emphasizes the beauty of diverse skin tones and the discrepancies between digital images and authentic skin health. By fostering an understanding of realistic outcomes and promoting the acceptance of natural skin characteristics, dermatologists can empower individuals with skin of color to prioritize authentic skin health over digitally influenced ideals, ultimately leading to more satisfying dermatological care and improved self-image.
文摘In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.
基金supported by the National Natural Science Foundation of China(52372234)the Research Foundation for Talented Scholars of Linyi University(Z6122010).
文摘The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,based on the principle of three primary colors,brick-red g-C_(3)N_(4)/Ag_(2)CrO_(4)composite was loaded onto a green polyurethane(PU)sponge using polyvinyl alcohol(PVA)as the linking agent.The resultant PU/PVA/g-C_(3)N_(4)/Ag_(2)CrO_(4)composite exhibits outstanding performance in simultaneous photothermal/photocatalytic water evaporation,pollutant degradation,sterilization,and thermoelectric generation.Under 1.0 kW m^(-2)irradiation,the water evaporation rate reaches 3.19 kg m^(-2)h-1,while a single thermoelectric module generates a maximum thermoelectric output power of 0.25 W m^(-2).Concurrently,rhodamine B(RhB)at a concentration of 4.0×10^(-4)mol L^(-1)undergoes complete photocatalytic degradation within 40 min.When the light intensity is 2.0 kW m^(-2),the evaporation rate soars to 8.52 kg m^(-2)h^(-1),and the thermoelectric power output increases to 1.1 W m^(-2).Furthermore,this photothermal/photocatalytic material based on the principle of three primary colors has excellent photothermal/photocatalytic antibacterial activity against Escherichia coli.By abandoning black light-absorbing materials,more active sites of the photocatalyst can be exposed.The g-C_(3)N_(4)/Ag_(2)CrO_(4)heterojunction accelerates the separation of photogenerated carriers,while the hydrophilic groups in the photothermal/photocatalytic materials reduce the water evaporation enthalpy.This research provides a novel approach for fabricating multi-function photothermal/photocatalytic materials,which could quicken the development of solution to freshwater and electricity energy shortages as well as environmental pollution issues.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation(NRF)grants(RS-2022-NR067559,RS-2023-00302586)funded by the Ministry of Science and ICT(MSIT)of the Korean government.
文摘Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color.
文摘The color cluster red,black and white occurs in the artistic,ritual and magical activities of virtually all cultures around the world,suggesting their preeminence in human symbolic thought.Among the various explanations that have been brought forth to account for the special status of these three colors are:1)evolutionary/ecological arguments,drawing support from vision science,perceptual philosophy and primate biology;2)cognitive arguments,which pay attention to how human beings categorize and create meaning out of perceptual experiences;3)linguistic arguments,as these are the earliest lexicalized color words in most languages;4)and diverse socio-cultural arguments.This paper will explore the manifestation of red,black and white–both in concrete terms,through the use and manipulation of materials,as well as abstract ideas–in Assyrian and Babylonian magical and ritual activities.It will highlight how meaning is created and communicated by relating colors to natural and supernatural phenomena and will further attempt to provide a methodological framework for the analysis of color symbolism.
文摘BACKGROUND Simultanagnosia is a neurological disorder that impairs an individual's ability to perceive more than one object at a time visually.While the individual may acknowledge the presence of multiple objects in his field of view,he cannot generally summarize the overall percept.CASE SUMMARY We describe a case of simultanagnosia in Posterior Cortical Atrophy,evidenced by the Ishihara color test.A 54-year-old woman complained of reading problems despite normal visual acuity and a structural eye exam.The patient failed to identify any of the Ishihara color plates in either eye despite adequate naming of colors.Automated visual field testing showed a homonymous hemianopia.Structural and functional neuroimaging and cerebrospinal fluid analysis were consistent with posterior cortical atrophy.CONCLUSION Simultanagnosia can be tested with the Ishihara pseudoisochromatic plates because the recognition of embedded number patterns in the test requires appreciation of a collection of individual stimuli.
基金supported by the Key Technologies R&D Program of Tianjin(Nos.24YFZCSN00030 and 24YFYSHZ00090)。
文摘Image coloring is an inherently uncertain and multimodal problem.By inputting a grayscale image into a coloring network,visually plausible colored photos can be generated.Conventional methods primarily rely on semantic information for image colorization.These methods still suffer from color contamination and semantic confusion.This is largely due to the limited capacity of convolutional neural networks to learn deep semantic information inherent in images effectively.In this paper,we propose a network structure that addresses these limitations by leveraging multi-level semantic information classification and fusion.Additionally,we introduce a global semantic fusion network to combat the issues of color contamination.The proposed coloring encoder accurately extracts object-level semantic information from images.To further enhance visual plausibility,we employ a self-supervised adversarial training method.We train the network structure on various datasets with varying amounts of data and evaluate its performance using the ImageNet validation set and COCO validation set.Experimental results demonstrate that our proposed algorithm can generate more realistic images compared to previous approaches,showcasing its high generalization ability.